To clarify the generative mechanism and influencing factors of graduate students' willingness and behavior of initiative scientific research and innovation, this research builds a quantitative model consisting of six variables: academic interest, regulatory pressure, conditions for improving scientific research and innovation capabilities, willingness to take initiative in scientific research and innovation, the promotion of achievements in scientific research, and initiative scientific research and innovation behavior. In total, 684 valid questionnaires were distributed and collected through WeChat Moments. Descriptive statistical analysis, reliability and validity analysis, factor analysis, path analysis, and conditioning analysis were conducted using the SPSS and structural equation model (SEM).
View Article and Find Full Text PDFLin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo.
View Article and Find Full Text PDFDNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences.
View Article and Find Full Text PDFRecent studies showed that Ten-eleven translocation (Tet) family dioxygenases can oxidize 5-methyl-2'-deoxycytidine (5-mdC) in DNA to yield the 5-hydroxymethyl, 5-formyl and 5-carboxyl derivatives of 2'-deoxycytidine (5-HmdC, 5-FodC and 5-CadC). 5-HmdC in DNA may be enzymatically deaminated to yield 5-hydroxymethyl-2'-deoxyuridine (5-HmdU). After their formation at CpG dinucleotide sites, these oxidized pyrimidine nucleosides, particularly 5-FodC, 5-CadC, and 5-HmdU, may be cleaved from DNA by thymine DNA glycosylase, and subsequent action of base-excision repair machinery restores unmethylated cytosine.
View Article and Find Full Text PDFThe expression of tumor suppressor Arf is tightly repressed during normal cell growth at a young age and is activated by oncogenic insults, and during aging, results in p53 activation and cell-cycle arrest to prevent hyperproliferation. The mechanisms of both transcriptional repression and activation of Arf are not understood. We show that p53 binds to and represses Arf expression and that this repression requires the function of both histone deacetylases (HDAC) and polycomb group (PcG) proteins.
View Article and Find Full Text PDFObjective: MTM1 gene is essential for superoxide dismutase 2 activity and normal mitochondrial functions. MTM1 deletion results in decreased superoxide dismutase 2 activity, impaired mitochondrial functions and growth defect on nonfermentable carbon source. To promote understanding of MTM1 gene, we started a genetic screen for transposon insertions which are able to rescue the growth defect resulting from MTM1 deletion.
View Article and Find Full Text PDFProtein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue.
View Article and Find Full Text PDFThe induction of cellular senescence by oncogenic signals acts as a barrier to cellular transformation and is attained, in part, by the elevation of the p16(INK4a) tumor suppressor gene. p16 expression is repressed epigenetically by Polycomb, but how p16 is induced is not known. We report here that the p16 locus is H3K4-methylated in highly expressing cells.
View Article and Find Full Text PDFMany different signaling pathways share common components but nevertheless invoke distinct physiological responses. In yeast, the adaptor protein Ste50 functions in multiple mitogen-activated protein (MAP) kinase pathways, each with unique dynamical and developmental properties. Although Kss1 activity is sustained and promotes invasive growth, Hog1 activity is transient and promotes cell adaptation to osmotic stress.
View Article and Find Full Text PDFCullins assemble the largest family of ubiquitin ligases by binding with ROC1 and various substrate receptors. CUL4 function is linked with many cellular processes, but its substrate-recruiting mechanism remains elusive. We identified a protein motif, the DWD box (DDB1-binding WD40 protein), and demonstrated the binding of 15 DWD proteins with DDB1-CUL4A.
View Article and Find Full Text PDF