Various nanoparticles have been developed for tumor-targeted drug delivery. However, nanoparticles with effective targeting and intelligent release capacity are still deficient. Herein, we present new pH-responsive and neutral charged nanoparticles for tumor-targeted anticancer drug delivery.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2020
Silver nanoparticles (AgNPs) are effective antimicrobial reagent, especially for the treatment of multidrug-resistant microorganisms. However, it is difficult to remove the residual harmful reducing agents in AgNPs synthesized by the traditional chemical reduction method. In addition, AgNPs exhibit cytotoxicity when exposed directly to cells for biomedical applications and will rapidly aggregate in aqueous environment.
View Article and Find Full Text PDFDialdehyde-amyloses, dicarboxyl-amyloses and dialdehyde-carboxyl-amyloses with different oxidation levels were prepared and used to study the effects of aldehyde and carboxyl groups on the antibacterial activity of oxidized amyloses. The results showed that dicarboxyl-amyloses presented antibacterial activity through acidic pH effect produced by carboxyl groups, which was easily reduced or eliminated by adjusting pH. Dialdehyde-amyloses possessed a broad-spectrum antibacterial activity owing to the reactivity of aldehyde groups rather than acidic pH effect.
View Article and Find Full Text PDFCarbohydr Polym
October 2017
The oxidized κ-carrageenans with different oxidation levels were prepared through the hydrogen peroxide and copper sulfate redox system. The oxidation level of oxidized κ-carrageenan was successfully controlled by adjusting the dosage of hydrogen peroxide. The results showed that the microtopography of oxidized κ-carrageenan changed from rough granules to smooth flakes, mainly resulting from the easily melting property of oxidized κ-carrageenan induced by introduced carboxyl and aldehyde groups.
View Article and Find Full Text PDF