Publications by authors named "Yaxian Zhang"

Contradiction between growing plantation economic demand and agro-ecological degradation has always restricted sustainable development of agricultural countries. This study applied the unit inventory analysis to evaluate the productions and discharges of farmland non-point source (FNPS) nitrogen (TN) and phosphorus (TP) among China's nine national-level agricultural districts over 1999-2019. On this basis, we quantified the evolutionary relationship between plantation economic output and FNPS pollution based on optimal regression fitting.

View Article and Find Full Text PDF

Background: The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment.

Methods: The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies.

View Article and Find Full Text PDF

Although urbanization has been widely examined in individual city and urban agglomeration scales, urban expansion patterns and dynamics in large-scale agricultural districts remain absent. In this study, multifaceted characteristics in urban expansion were quantified in China's nine national-level agricultural districts, and responses of dry-wet circumstances to urban sprawl were evaluated. From 1980 to 2018, China has undergone an extensive urban sprawl.

View Article and Find Full Text PDF

Poxviruses have evolved a variety of innate immunity evasion mechanisms, some of which involve poxvirus-encoded E3 ubiquitin ligases and adaptor proteins. Based on their functional domains and ubiquitin transfer mechanisms, these poxvirus-encoded E3 ubiquitin ligases and adaptor proteins can be divided into five categories: PRANC, ANK/BC, BBK, P28/RING, and MARCH proteins. Although the substrates of many poxvirus E3 ubiquitin ligases remain to be discovered, most of the identified substrates are components of the innate immune system.

View Article and Find Full Text PDF

The yeast Tri-SUS system can be used to study tripartite protein–protein interactions between bait and prey protein pairs by modulation of expression of their binding partner

View Article and Find Full Text PDF

Solanum lycopersicum var. cerasiforme accession PI 114490 has broad-spectrum resistance to bacterial spot caused by several species of Xanthomonas. Resistance is quantitatively inherited, and a common quantitative trait locus QTL-11B on chromosome 11 has been identified previously.

View Article and Find Full Text PDF

Bacterial spot, which is caused by several Xanthomonas species, is an economically important disease in tomato (Solanum lycopersicum). Great efforts have been made for the identification of resistant sources and the genetic analysis of resistance. However, the development of resistant commercial varieties is slow due to the existence of multiple species of the pathogen and a poor understanding of the resistance mechanism in tomato.

View Article and Find Full Text PDF

Tetrachlorobisphenol A (TCBPA) can promote intracellular reactive oxygen species (ROS) accumulation. However, limited attention has been given to mechanisms underlying TCBPA exposure-associated ROS accumulation. Here, such mechanisms were explored in the simple eukaryotic model organism Saccharomyces cerevisiae exposed to multiple concentrations of TCBPA.

View Article and Find Full Text PDF

Trehalose could protect the typical food microorganism Saccharomyces cerevisiae cell against environmental stresses; however, the other regulation effects of trehalose on yeast cells during the fermentation are still poorly understood. In this manuscript, different concentrations (i.e.

View Article and Find Full Text PDF

Cellulose filter aid (CFA), a skeleton builder, has been studied for sludge conditioning at laboratory scale because of its function in reducing compressibility of sludge cake. However, there are few practical applications of CFA at the pilot and factory scales. In this study, we combined CFA with an advanced sludge dewatering technology, in practical applications.

View Article and Find Full Text PDF

Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron. Geobacter sulfurreducens is a representative dissimilatory iron-reducing bacterium that assembles electrically conductive pili and cytochromes. The impact of supplementation with γ-FeO nanoparticles (NPs) (0.

View Article and Find Full Text PDF

Bauxite residue, a major by-product of the alumina-producing Bayer process, is a serious environmental pollutant due to its high alkalinity. Here, we reported an operation system designed in our laboratory that included washing and electrodialysis dealkalization systems with aeration pipes. Washing with aeration releases a substantial amount of free alkali and attached alkali into water and increases the dealkalization efficiency.

View Article and Find Full Text PDF

Bioethanol fermentation is usually contaminated by bacteria, especially lactic acid bacteria (LAB), thereby leading to decrease of bioethanol yield and serious economic losses. Nisin is safer for controlling of bacterial contamination than antibiotics that are widely applied in industry. Moreover, in LAB contaminative bioethanol fermentation system, consistently decreased pH value provides opportunity to realize pH value responsive material-based release of anti-bacteria substances for intelligent and persistent controlling of bacterial contamination.

View Article and Find Full Text PDF

Tetrachlorobisphenol A (TCBPA), which is widely used as flame retardant, can be released into various environments, thereby being absorbed by wildlife or human beings through food chain's bio-magnification and causing some adverse influences on wildlife or human beings. However, limited data are currently available on TCBPA-associated cytotoxicity and related mechanisms. Here, the cytotoxicity induced by different concentrations of TCBPA (i.

View Article and Find Full Text PDF

The purpose of this study is to investigate the effects of nano-sized or submicro FeO/FeO on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized FeO/FeO on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized FeO (317.1±2.

View Article and Find Full Text PDF

Calcium ion (Ca) is a universal second messenger that plays a critical role in plant responses to diverse physiological and environmental stimuli. The stimulus-specific signals are perceived and decoded by a series of Ca binding proteins serving as Ca sensors. The majority of Ca sensors possess the EF-hand motif, a helix-loop-helix structure which forms a turn-loop structure.

View Article and Find Full Text PDF

Brucella DNA activates the host innate immune system via the intracellular Toll-like receptor 9 (TLR9). However, the Brucella DNA sequences which are responsible for these immunostimulatory effects remain to be elucidated. The present study demonstrated that repetitive extragenic palindromic (REPs) sequences present in Brucella DNA were able to stimulate macrophages through TLR9.

View Article and Find Full Text PDF

Objective: To screen the repetitive extragenic palindromic sequences with activation of toll-like receptor 9 (TLR9) activity from Brucella melitensis DNA, providing new ideas and new targets for prevention and treatment of brucellosis.

Methods: Bioinformatics methods were used to detect repetitive extragenic palindromic (REP) sequences from Brucella melitensis DNA. The studied REPs were selected and synthesized.

View Article and Find Full Text PDF

Polymerase chain reaction (PCR) is an in vitro technique for the nucleic acid amplification, which is commonly used to diagnose infectious diseases. The use of PCR for pathogens detection, genotyping and quantification has some advantages, such as high sensitivity, high specificity, reproducibility and technical ease. Brucellosis is a common zoonosis caused by Brucella spp.

View Article and Find Full Text PDF