Publications by authors named "Yaxian Wang"

Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.

View Article and Find Full Text PDF
Article Synopsis
  • Decreased activity of the SLC26A4 protein, critical for ear fluid balance, is linked to hearing loss.
  • Researchers found that the μ2 subunit of the AP-2 complex plays a key role in controlling SLC26A4's presence at the cell membrane where it helps reabsorb endolymph in the inner ear.
  • By blocking clathrin-mediated endocytosis, they showed that more SLC26A4 accumulates on cell surfaces, suggesting that the SLC26A4-μ2 interaction directly influences how much SLC26A4 is available where it’s needed.
View Article and Find Full Text PDF
Article Synopsis
  • lncRNA, specifically HIF1A-AS2, is found to be upregulated in colorectal cancer (CRC) tissues, linking it to poor patient outcomes and tumor development.
  • HIF1A-AS2 promotes cancer cell proliferation, metastasis, and a shift to aerobic glycolysis by influencing the expression of FOXC1 through direct interaction with miR-141-3p.
  • The study suggests that HIF1A-AS2, regulated by SP1 and also packaged in exosomes, could serve as a valuable diagnostic marker and a potential target for CRC treatments.
View Article and Find Full Text PDF

We propose a new formalism and an effective computational framework to study self-trapped excitons (STEs) in insulators and semiconductors from first principles. Using the many-body Bethe-Salpeter equation in combination with perturbation theory, we are able to obtain the mode- and momentum-resolved exciton-phonon coupling matrix element in a perturbative scheme and explicitly solve the real space localization of the electron (hole), as well as the lattice distortion. Further, this method allows us to compute the STE potential energy surface and evaluate the STE formation energy and Stokes shift.

View Article and Find Full Text PDF

Diffusion processes govern fundamental phenomena such as phase transformations, doping, and intercalation in van der Waals (vdW) bonded materials. Here, the diffusion dynamics of W atoms by visualizing the motion of individual atoms at three different vdW interfaces: hexagonal boron nitride (BN)/vacuum, BN/BN, and BN/WSe, by recording scanning transmission electron microscopy movies is quantified. Supported by density functional theory (DFT) calculations, it is inferred that in all cases diffusion is governed by intermittent trapping at electron beam-generated defect sites.

View Article and Find Full Text PDF

In neurons, macroautophagy/autophagy is a frequent and critical process. In the axon, autophagy begins in the axon terminal, where most nascent autophagosomes form. After formation, autophagosomes must initiate transport to exit the axon terminal and move toward the cell body via retrograde transport.

View Article and Find Full Text PDF

Background: Osteosarcoma is a leading subtype of bone tumor affecting adolescents and adults. Comparative molecular characterization among different age groups, especially in pediatric, adolescents and adults, is scarce.

Methods: We collected samples from 194 osteosarcoma patients, encompassing pediatric, adolescent, and adult cohorts.

View Article and Find Full Text PDF

The behavior of rock pressure is a natural and inevitable phenomenon during coal seam mining, resulting in numerous casualties and equipment damage annually. The ability to predict and assess the strength of rock pressure in the coal face beforehand has become crucial in preventing rock pressure accidents. This paper took the prediction of rock pressure strength in coal face as the research object, and based on the multi-factor decision-making theory, proposed a new method for the evaluation of rock pressure strength in coal face-"dual-dimension rock pressure strength evaluation method".

View Article and Find Full Text PDF

Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS.

View Article and Find Full Text PDF

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength.

View Article and Find Full Text PDF

Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study the photoinduced ultrafast demagnetization of a prototype monolayer ferromagnet FeGeTe and resolve the three-stage demagnetization process characterized by an ultrafast and substantial demagnetization on a timescale of 100 fs, followed by light-induced coherent A phonon dynamics which is strongly coupled to the spin dynamics in the next 200-800 fs.

View Article and Find Full Text PDF

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering.

View Article and Find Full Text PDF

Background: Lactylation, a novel contributor to post-translational protein modifications, exhibits dysregulation across various tumors. Nevertheless, its intricate involvement in colorectal carcinoma, particularly for non-histone lactylation and its intersection with metabolism and immune evasion, remains enigmatic.

Methods: Employing immunohistochemistry on tissue microarray with clinical information and immunofluorescence on colorectal cell lines, we investigated the presence of global lactylation and its association with development and progression in colorectal cancer as well as its functional location.

View Article and Find Full Text PDF

Introduction: Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases.

Methods: The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment.

View Article and Find Full Text PDF

Scope: Branched chain amino acids (BCAAs) are essential amino acids and important nutrient signals for energy and protein supplementation. The study uses muscle-specific branched-chain α-keto acid dehydrogenase kinase (Bckdk) conditional knockout (cKO) mice to reveal the contribution of BCAA metabolic dysfunction to muscle wasting.

Method And Results: Muscle-specific Bckdk-cKO mice are generated through crossbreeding of Bckdk mice with Myf5 mice.

View Article and Find Full Text PDF

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM).

View Article and Find Full Text PDF

The unexpected chiral order observed in 1T-TiSe_{2} represents an exciting area to explore chirality in condensed matter, while its microscopic mechanism remains elusive. Here, we have identified three metastable collective modes-the so-called single-q modes-in single layer TiSe_{2}, which originate from the unstable phonon eigenvectors at the zone boundary and break the threefold rotational symmetry. We show that polarized laser pulse is a unique and efficient tool to reconstruct the transient potential energy surface, so as to drive phase transitions between these states.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cachexia leads to significant weight loss and muscle wasting, driven by increased catabolism and decreased anabolism.
  • In mice, treatment with D-2-hydroxyglutarate (D2HG) caused muscle shrinkage and heightened levels of proteins linked to muscle degradation, particularly in those with IDH1 mutations.
  • Targeting the IDH1 mutation with the inhibitor ivosidenib showed potential in slowing down cancer cachexia, indicating the importance of personalized treatment for those affected by this condition.
View Article and Find Full Text PDF

Objective: To identify suitable reference genes for gene expression studies in rat dorsal root ganglia (DRG) neurons.

Methods: The raw cycle threshold (Ct) values of 12 selected reference genes were obtained via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in neurons at different developmental stages or under different treatments. Two strategies were employed to screen the most stable reference genes: the genes were ranked according to the coefficient of biological variation and further validated using geNorm and NormFinder programs.

View Article and Find Full Text PDF

Resolving the complete electron scattering dynamics mediated by coherent phonons is crucial for understanding electron-phonon couplings beyond equilibrium. Here we present a time-resolved theoretical investigation on strongly coupled ultrafast electron and phonon dynamics in monolayer WSe_{2}, with a focus on the intervalley scattering from the optically "bright" K state to "dark" Q state. We find that the strong coherent lattice vibration along the longitudinal acoustic phonon mode [LA(M)] can drastically promote K-to-Q transition on a timescale of ∼400  fs, comparable with previous experimental observation on thermal-phonon-mediated electron dynamics.

View Article and Find Full Text PDF

Diagram Question Answering (DQA) aims to correctly answer questions about given diagrams, which demands an interplay of good diagram understanding and effective reasoning. However, the same appearance of objects in diagrams can express different semantics. This kind of visual semantic ambiguity problem makes it challenging to represent diagrams sufficiently for better understanding.

View Article and Find Full Text PDF

Background: The tumourigenesis of various cancers is influenced by epigenetic deregulation. Among 591 epigenetic regulator factors (ERFs) examined, AF9 showed significant inhibition of malignancy in colorectal cancer (CRC) based on our wound healing assays. However, the precise role of AF9 in CRC remains to be explored.

View Article and Find Full Text PDF

Colorectal cancer liver metastasis (CRLM) is one of the leading causes of death among patients with colorectal cancer (CRC). Although immunotherapy has demonstrated encouraging outcomes in CRC, its benefits are minimal in CRLM. The complex immune landscape of the hepatic tumour microenvironment is essential for the development of a premetastatic niche and for the colonisation and metastasis of CRC cells; thus, an in-depth understanding of these mechanisms can provide effective immunotherapeutic targets for CRLM.

View Article and Find Full Text PDF

The main features of cancer cachexia include skeletal muscle atrophy, which can significantly reduce the quality of life of patients. Clinical treatment of cancer cachexia is mainly based on nutritional therapy and physical exercise; medication only improves appetite but does not reverse the symptoms of skeletal muscle wasting. In this work, we systematically studied the underlying molecular mechanisms by which cucurbitacin IIb (CuIIb) ameliorates muscle wasting in cancer cachexia both in vitro and in vivo.

View Article and Find Full Text PDF

The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons.

View Article and Find Full Text PDF