IEEE J Biomed Health Inform
September 2024
With the advancement of sequencing methodologies, the acquisition of vast amounts of multi-omics data presents a significant opportunity for comprehending the intricate biological mechanisms underlying diseases and achieving precise diagnosis and treatment for complex disorders. However, as diverse omics data are integrated, extracting sample-specific features within each omics modality and exploring potential correlations among different modalities while avoiding mutual interference becomes a critical challenge in multi-omics data integration research. In the context of this study, we proposed a framework that unites specificity-aware GATs and cross-modal attention to integrate different omics data (MOSGAT).
View Article and Find Full Text PDFMicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed.
View Article and Find Full Text PDFComplex Intell Systems
June 2023
Medical image segmentation is crucial for the diagnosis and analysis of disease. Deep convolutional neural network methods have achieved great success in medical image segmentation. However, they are highly susceptible to noise interference during the propagation of the network, where weak noise can dramatically alter the network output.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
August 2024
There exists growing evidence that circRNAs are concerned with many complex diseases physiological processes and pathogenesis and may serve as critical therapeutic targets. Identifying disease-associated circRNAs through biological experiments is time-consuming, and designing an intelligent, precise calculation model is essential. Recently, many models based on graph technology have been proposed to predict circRNA-disease association.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2024
Echocardiography is essential for evaluating cardiac anatomy and function during early recognition and screening for congenital heart disease (CHD), a widespread and complex congenital malformation. However, fetal CHD recognition still faces many difficulties due to instinctive fetal movements, artifacts in ultrasound images, and distinctive fetal cardiac structures. These factors hinder capturing robust and discriminative representations from ultrasound images, resulting in CHD's low prenatal detection rate.
View Article and Find Full Text PDFRupture of intracranial aneurysm is the first cause of subarachnoid hemorrhage, second only to cerebral thrombosis and hypertensive cerebral hemorrhage, and the mortality rate is very high. MRI technology plays an irreplaceable role in the early detection and diagnosis of intracranial aneurysms and supports evaluating the size and structure of aneurysms. The increase in many aneurysm images, may be a massive workload for the doctors, which is likely to produce a wrong diagnosis.
View Article and Find Full Text PDFProtein secondary structure prediction is extremely important for determining the spatial structure and function of proteins. In this paper, we apply an optimized convolutional neural network and long short-term memory neural network models to protein secondary structure prediction, which is called OCLSTM. We use an optimized convolutional neural network to extract local features between amino acid residues.
View Article and Find Full Text PDF