Publications by authors named "Yawata Y"

Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders.

View Article and Find Full Text PDF

Effective treatments for major depressive disorder (MDD) have long been needed. One hypothesis for the mechanism of depression involves a decrease in neuroactive steroids such as allopregnanolone, an endogenous positive allosteric modulator of the γ-aminobutyric acid-gated chloride channel (GABA) receptor. In our previous study, we discovered that allopregnanolone, not diazepam, exhibited antidepressant-like effects in the social interaction test (SIT) of social defeat stress (SDS) model mice.

View Article and Find Full Text PDF
Article Synopsis
  • Zuranolone (SAGE-217) is a neuroactive steroid that shows quick and effective antidepressant effects, unlike benzodiazepines, which are not approved for MDD treatment but target different GABA receptors.
  • A study comparing allopregnanolone (another neuroactive steroid) and diazepam (a benzodiazepine) found that only allopregnanolone had antidepressant-like effects in stressed mice, linked to increases in certain brain activity and inhibition mechanisms not seen with diazepam.
View Article and Find Full Text PDF

The pungent component of sansho (Japanese pepper, ) is sanshool, which is easily oxidized and decomposed. We have previously reported several sanshool stabilizers, such as α-tocopherol (α-Toc). Sansho pericarp powder treated with middle-chain triglycerides (MCTs) can be used to obtain extracts containing hydroxy-α-sanshool (HαS).

View Article and Find Full Text PDF

Japanese pepper (sansho, ) contains several types of sanshools belonging to -alkylamides. Because of the long-chain unsaturated fatty acids present in their structure, sanshools are prone to oxidative deterioration, which poses problems in processing. In this paper, we evaluated the effects of antioxidants from the genus in preventing sanshool degradation using accelerated tests.

View Article and Find Full Text PDF

In some models, animals approach aversive stimuli more than those housed in an enriched environment. Here, we found that male mice in an impoverished and unstimulating (i.e.

View Article and Find Full Text PDF

To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations.

View Article and Find Full Text PDF

Herein, we demonstrate that the use of index-matching materials (IMMs) allows direct visualization of microbial cells maintained at a solid-liquid interface through confocal reflection microscopy (CRM). The refractive index mismatch induces a background reflection at the solid-liquid interface that dwarfs the reflection signals from the cells and results in low-contrast images. We found that the IMMs sufficiently suppressed the background reflection at the solid-liquid interface, facilitating the imaging of microbes at the solid surface using CRM.

View Article and Find Full Text PDF

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics.

View Article and Find Full Text PDF

Optimal foraging theory provides a framework to understand how organisms balance the benefits of harvesting resources within a patch with the sum of the metabolic, predation, and missed opportunity costs of foraging. Here, we show that, after accounting for the limited environmental information available to microorganisms, optimal foraging theory and, in particular, patch use theory also applies to the behavior of marine bacteria in particle seascapes. Combining modeling and experiments, we find that the marine bacterium optimizes nutrient uptake by rapidly switching between attached and planktonic lifestyles, departing particles when their nutrient concentration is more than hundredfold higher than background.

View Article and Find Full Text PDF

Described here is confocal reflection microscopy-assisted single-cell innate fluorescence analysis (CRIF), a minimally invasive method for reconstructing the innate cellular fluorescence signature from each individual live cell in a population distributed in a three-dimensional (3D) space. The innate fluorescence signature of a cell is a collection of fluorescence signals emitted by various biomolecules within the cell. Previous studies established that innate fluorescence signatures reflect various cellular properties and differences in physiological status and are a rich source of information for cell characterization and identification.

View Article and Find Full Text PDF

We demonstrate a method for the generation of controlled, dynamic chemical pulses-where localized chemoattractant becomes suddenly available at the microscale-to create micro-environments for microbial chemotaxis experiments. To create chemical pulses, we developed a system to introduce amino acid sources near-instantaneously by photolysis of caged amino acids within a polydimethylsiloxane (PDMS) microfluidic chamber containing a bacterial suspension. We applied this method to the chemotactic bacterium, Vibrio ordalii, which can actively climb these dynamic chemical gradients while being tracked by video microscopy.

View Article and Find Full Text PDF

Here we analyzed the innate fluorescence signature of the single microbial cell, within both clonal and mixed populations of microorganisms. We found that even very similarly shaped cells differ noticeably in their autofluorescence features and that the innate fluorescence signatures change dynamically with growth phases. We demonstrated that machine learning models can be trained with a data set of single-cell innate fluorescence signatures to annotate cells according to their phenotypes and physiological status, for example, distinguishing a wild-type cell from its nitrogen metabolism mutant counterpart and log-phase cells from stationary-phase cells of We developed a minimally invasive method (onfocal eflection microscopy-assisted single-cell nnate luorescence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence signatures of each of the individual live microbial cells in a three-dimensional space.

View Article and Find Full Text PDF

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear.

View Article and Find Full Text PDF

Aquatic environments harbor a great diversity of microorganisms, which interact with the same patchy, particulate, or diffuse resources by means of a broad array of physiological and behavioral adaptations, resulting in substantially different life histories and ecological success. To date, efforts to uncover and understand this diversity have not been matched by equivalent efforts to identify unifying frameworks that can provide a degree of generality and thus serve as a stepping stone to scale up microscale dynamics to predict their ecosystem-level consequences. In particular, evaluating the ecological consequences of different resource landscapes and of different microbial adaptations has remained a major challenge in aquatic microbial ecology.

View Article and Find Full Text PDF

Appropriate decisions involve at least two aspects: the speed of the decision and the correctness of the decision. Although a quick and correct decision is generally believed to work favorably, these two aspects may be interdependent in terms of overall task performance. In this study, we scrutinized learning behaviors in an operant task in which rats were required to poke their noses into either of two holes by referring to a light cue.

View Article and Find Full Text PDF

Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows.

View Article and Find Full Text PDF

The advent of microscale technologies, such as microfluidics, has revolutionized many areas of biology yet has only recently begun to impact the field of bacterial biofilms. By enabling accurate control and manipulation of physical and chemical conditions, these new microscale approaches afford the ability to combine important features of natural and artificial microbial habitats, such as fluid flow and ephemeral nutrient sources, with an unprecedented level of flexibility and quantification. Here, we review selected case studies to exemplify this potential, discuss limitations, and suggest that this approach opens new vistas into biofilm research over traditional setups, allowing us to expand our understanding of the formation and consequences of biofilms in a broad range of environments and applications.

View Article and Find Full Text PDF

Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest.

View Article and Find Full Text PDF

Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air-liquid interface.

View Article and Find Full Text PDF

Although competition-dispersal tradeoffs are commonly invoked to explain species coexistence for animals and plants in spatially structured environments, such mechanisms for coexistence remain unknown for microorganisms. Here we show that two recently speciated marine bacterioplankton populations pursue different behavioral strategies to exploit nutrient particles in adaptation to the landscape of ephemeral nutrient patches characteristic of ocean water. These differences are mediated primarily by differential colonization of and dispersal among particles.

View Article and Find Full Text PDF

Biofilms, such as dental plaque, are aggregates of microorganisms attached to a surface. Thus, visualization of biofilms together with their attached substrata is important in order to understand details of the interaction between them. However, so far there is limited availability of such techniques.

View Article and Find Full Text PDF

Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P.

View Article and Find Full Text PDF

A microfluidic device was developed for rapid determination of the minimum inhibitory concentration (MIC) of antibiotics against bacteria. A small volume of sample solution was introduced into multiple chambers simultaneously, and the growth of bacteria was quantified using a noninvasive three-dimensional (3D) visualization technique.

View Article and Find Full Text PDF