Publications by authors named "Yaw-Kuen Li"

The first tunable nano-bending structures of [1]rotaxane containing a single-fluorophoric N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) moiety (i.e., [1]RA) are developed as a loosened lasso structure to feature the bright white-light emission [CIE (0.

View Article and Find Full Text PDF

Development of rapid detection strategies that target potentially pathogenic bacteria has gained increasing attention due to the increasing awareness for better health and safety. In this study, we evaluate an intrinsically antimicrobial polymer, 2Gdm, which is a poly(norbornene)-based functional polymer featuring guanidinium groups as side chains, for bacterial detection by the means of triboelectric nanogenerators (TENGs) and triboelectric nanosensors (TENSs). Attachment of bacteria to the sensing layer is anticipated to alter the overall triboelectric properties of the underlying polymer layer.

View Article and Find Full Text PDF

Bistable [2] daisy chain rotaxanes with respective extended and contracted forms of 2 and 2 containing a blue-emissive anthracene () donor and orange-emissive indandione-carbazole () acceptor were successfully synthesized via click reaction. Tunable-emission bistable [2] daisy chain rotaxanes with fluorescence changes from blue to orange, including bright-white-light emissions, could be modulated by the aggregation-induced emission (AIE) characteristics and Förster resonance energy transfer (FRET) processes through altering water fractions and shuttling processes (i.e.

View Article and Find Full Text PDF

β-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 β-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction.

View Article and Find Full Text PDF

The self-trapping nano-loop structures of [1]rotaxanes exhibited multiple Förster resonance energy transfer (FRET) patterns dual and sequential locking/unlocking of pH-gated and UV exposure processes. As a tightened and constrained nano-loop in the acidic condition, dithienylethene (DTE) unit was locked in the highly bending open form to forbid ring closure upon UV irradiation.

View Article and Find Full Text PDF

Manipulations of singlet oxygen ( O ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for O productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assays (ELISAs) are tests that uses antibody recognition and enzyme catalytic activity to identify a substance, and they have been widely used as a diagnostic tool in the clinic. However, performing an ELISA requires various liquid handling steps and long binding times. To solve this problem, we developed a magnetic microfluidic ELISA system (MMF-ELISA).

View Article and Find Full Text PDF

Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD) that causes huge global economic losses for the swine industry. Effective strategies or rapid detection of PCV2 in pig are essential to control PCVAD. Here, single-chain variable fragments (scFvs) were selected and characterized against the PCV2 capsid using phage display technology.

View Article and Find Full Text PDF

The novel multistimuli-responsive monofluorophoric supramolecular polymer and pseudo[3]rotaxane consisted of the closed form of nonemissive fluorescein guest along with TPE-based main-chain macrocyclic polymer and TPE-functionalized macrocycle hosts, respectively. By the combination of various external stimuli, these fluorescent supramolecular host-guest systems could reveal interesting photoluminescence (PL) properties in DMF/HO (1:1, v/v) solutions, including bifluorophoric host-guest systems after the complexation of Al ion, i.e.

View Article and Find Full Text PDF

(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness.

View Article and Find Full Text PDF

A supramolecular [2]pseudo-rotaxane containing a naphthalimide-based pillararene host and a spiropyran-based imidazole guest was synthesized and investigated in a semiaqueous solution with 90% water fraction. Upon UV exposure, the close-form structure of nonemissive spiropyran guest could be transformed into the open-form structure of red-emissive merocyanine guest reversibly, which was utilized as a monofluorophoric sensor to detect copper(II) and cyanide ions. Moreover, the naphthalimide host as an energy donor with green photoluminescence (PL) emission at 505 nm was complexed with the merocyanine guest as an energy acceptor with red PL emission at 650 nm in 1:1 molar ratio to generate a [2]pseudo-rotaxane polymer, which was further verified by the diffusion coefficients of DOSY nuclear magnetic resonance (NMR) measurements.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan in the extracellular matrix and a ligand of CD44, a transmembrane glycoprotein that is important in cell migration. Crystal and NMR studies found a hexasaccharide of the pattern (GlcA-GlcNAc)3 as the shortest HA that could bind to CD44, but molecular dynamics simulations indicated that a tetrasaccharide of the pattern (GlcNAc-GlcA)2 is the key structure interacting with CD44. Access to oligomers with such a repeat pattern is crucial in binding studies with CD44.

View Article and Find Full Text PDF

Ozonolysis of isoprene to produce Criegee intermediates such as methyl vinyl ketone oxide (MVKO), CHC(CH)OO, is an important process in atmospheric chemistry. MVKO was recently produced and identified in laboratories after photolysis of a gaseous mixture of 1,3-diiodo-but-2-ene, (CHI)HC═C(CH)I, and O, but the mechanism of its formation remains unexplored. We synthesized pure ()- and ()-1,3-diiodo-but-2-ene and measured their distinct IR spectra.

View Article and Find Full Text PDF

The pyrrolysyl-tRNA synthetase (PylRS)⋅tRNA pair can be used to incorporate non-canonical amino acids (ncAAs) into proteins at installed amber stop codons. Although engineering of the PylRS active site generates diverse binding pockets, the substrate ranges are found similar in charging lysine and phenylalanine analogs. To expand the diversity of the ncAA side chains that can be incorporated the PylRS⋅tRNA pair, exploring remote interactions beyond the active site is an emerging approach in expanding the genetic code research.

View Article and Find Full Text PDF

Cationic polymers exhibit high cytotoxicity via strong interaction with cell membranes. To reduce cell membrane damage, a hydrophilic polymer is introduced to the cationic nanoparticle surface. The hydrophilic polymer coating of cationic nanoparticles resulted in a nearly neutral nanoparticle.

View Article and Find Full Text PDF

We report a peptide-based sensor that involves a multivalent interaction with L-ascorbate 6-phosphate lactonase (UlaG), a protein marker of Streptococcus pneumonia. By integrating the antifouling feature of the sensor, we significantly improved the signal-to-noise ratio of UlaG detection. The antifouling surface was fabricated via electrodeposition using an equivalent mixture of 4-amino-N,N,N-trimethylanilinium and 4-aminobenzenesulfonate.

View Article and Find Full Text PDF

Laser ablation in liquids (LAL) offers a facile technique to develop a large variety of surfactant-free nanomaterials with high purity. However, due to the difficulty in the control of the particle synthesis process, the as-prepared nanomaterials always have a broad size distribution with a large polydispersity (σ). Surfactant-free properties can also cause problems with particle growth, which further increases the difficulty in size control of the colloids.

View Article and Find Full Text PDF

Boronic acids (BAs) provide strong potential in orientation immobilization of antibody and the modification method is crucial for efficiency optimization. A highly effective method has been developed for rapid antibody immobilization on gold electrodes through the electrodeposition of a BA⁻containing linker in this study. Aniline-based BA forms a condense layer while antibody could automatically immobilize on the surface of the electrode.

View Article and Find Full Text PDF

Many circulating cancer-related proteins, such as fibroblast growth factors (FGFs), associate with glycosaminoglycans-particularly heparan sulfate-at the cell surface. Disaccharide analogues of heparan sulfate had previously been identified as the shortest components out of the sugars that bind to FGF-1 and FGF-2. Taking note of the typical pose of l-iduronic acid, we conceived of per-O-sulfonated analogues of such disaccharides, and devised a single-step procedure for per-O-sulfonation of unprotected sugars with concomitant 1,6-anhydro bridge formation to achieve such compounds through direct use of SO ⋅Et N as sulfonation reagent and dimethylformamide as solvent.

View Article and Find Full Text PDF

There are few reports on zero-field-cooled (ZFC) magnetization measurements for Fe@FeO or FeO particles synthesized by laser ablation in liquids (LAL) of Fe, and the minimum blocking temperature (T) of 120 K reported so far is still much higher than those of their counterparts synthesized by chemical methods. In this work, the minimum blocking temperature was lowered to 52 K for 4⁻5 nm α-Fe₂O₃ particles synthesized by femtosecond laser ablation of Fe in acetone. The effective magnetic anisotropy energy density (K) is calculated to be 2.

View Article and Find Full Text PDF

Objectives: A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv).

Results: Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine.

View Article and Find Full Text PDF

Streptococcus pneumoniae, a penicillin-sensitive bacterium, is recognized as a major cause of pneumonia and is treated clinically with penicillin-based antibiotics. The rapid increase in resistance to penicillin and other antibiotics affects 450 million people globally and results in 4 million deaths every year. To unveil the mechanism of resistance of S.

View Article and Find Full Text PDF

Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin.

View Article and Find Full Text PDF

Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling.

View Article and Find Full Text PDF