Publications by authors named "Yaw-Jen Chang"

Elevated levels of uric acid (UA) in the body may not only lead to the formation of stones but also increase the risk of developing chronic kidney disease (CKD). This study presents a biosensor for detecting UA concentration in stones and a deep learning-based artificial neural network (ANN) system for analyzing CKD risk. The biosensor is a screen-printed electrode (SPE) chip, whose surface was modified using oxygen plasma, enabling the detection of UA concentration via cyclic voltammetry.

View Article and Find Full Text PDF

Due to the clinical similarities between pulmonary embolism (PE) and myocardial infarction (MI), physicians often encounter challenges in promptly distinguishing between them, potentially missing the critical window for the correct emergency response. This paper presents a biosensor, termed the PEMI biosensor, which is designed for the identification and quantitative detection of pulmonary embolism or myocardial infarction. The surface of the working electrode of the PEMI biosensor was modified with graphene oxide and silk fibroin to immobilize the mixture of antibodies.

View Article and Find Full Text PDF

This study presents and compares two methods for identifying the types of extracellular vesicles (EVs) from different cell lines. Through SDS-PAGE analysis, we discovered that the ratio of CD63 to CD81 in different EVs is consistent and distinct, making it a reliable characteristic for recognizing EVs secreted by cancer cells. However, the electrophoresis and imaging processes may introduce errors in the concentration values, especially at lower concentrations, rendering this method potentially less effective.

View Article and Find Full Text PDF

To evaluate the impact of frailty on perioperative outcomes of older patients undergoing PCNL, utilizing the US Nationwide Inpatient Sample (NIS) database. Data of hospitalized patients ≥ 60 years who received PCNL were extracted from the 2010 to 2020 NIS database, and included demographics, clinical, and hospital-related information. Patients were assigned to low (< 5), medium (5-15), and high frailty risk (> 15) groups based on the hospital frailty risk score (HFRS).

View Article and Find Full Text PDF

This paper presents a portable point-of-care testing (POCT) device to conduct simultaneous and on-site tests of ABO and Rh(D) forward blood typing and hemophilia diagnosis using only a small amount of human whole blood sample. The POCT device consisted of a spinning module, a measuring circuit, an interdigitated electrode (IDE) for hemophilia diagnosis, and three disposable microfluidic chips for bioassays with anti-A, anti-B, and anti-D, respectively, and measurement of the concentration of factor VIII. Agglutination will occur if red blood cells (RBCs) are exposed to the corresponding antibody.

View Article and Find Full Text PDF

Uric acid is the primary end product of human purine metabolism and has been regarded as a key parameter in urine and blood for monitoring physiological conditions. This paper presents a paper-based biosensor for a quantitative determination of uric acid using electrochemical detection. The working electrode of the biosensor is modified with graphene oxide (GO) and 5-amino-1,3,4-thiadiazole-2-thiol (ATT) by electropolymerizing ATT on the surface of graphene oxide.

View Article and Find Full Text PDF

This paper presents a droplet-based immunoassay chip allowing each droplet to be positioned in a passive droplet-positioning cavern under continuous flow. In addition, the chip surface can immobilize any kind of histidine-tagged capture agents for performing simultaneous multiplex immunoassays. Distinct families of monodispersed droplets were generated since a diaphragm, which is a thin elastomeric flap film suspended from the top of the main channel, forms a double T junction for shearing the aqueous liquids by the carrier flow.

View Article and Find Full Text PDF

Oligozoospermia and asthenospermia are significant issues related to male infertility, and clinical treatments for infertility are complicated and expensive. This paper presents a sperm-magnetic controlling technology to manipulate sperm movement utilizing surface charged Fe₃O₄ magnetic nanoparticles (MNPs). Since the surface membrane of sperm is negatively charged, positively charged MNPs can be attracted to the cell membrane of sperm, but the sperm cells and the negatively charged MNPs will repel each other.

View Article and Find Full Text PDF

This paper presents a novel design of a capillary stop valve with a chamfered side that can be used as a flow regulator to hold an injected microfluid in the valve position in a capillary force-driven microfluidic device. Biochemical analysis can be conducted if the chamfer-type valves are placed at strategic positions according to the test protocol. Hence, the stored reagent can be dragged out of the valve for further reaction when the specimen passes through.

View Article and Find Full Text PDF

Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins.

View Article and Find Full Text PDF

A blood-typing assay is a critical test to ensure the serological compatibility of a donor and an intended recipient prior to a blood transfusion. This article presents a lab-on-disc blood-typing system to conduct a total of eight assays for a patient, including forward-typing tests, reverse-typing tests, and irregular-antibody tests. These assays are carried out in a microfluidic disc simultaneously.

View Article and Find Full Text PDF

Blood typing assay is a critical test to ensure the serological compatibility of a donor and an intended recipient prior to a blood transfusion. This paper presents a microfluidic blood typing system using a small quantity of blood sample to determine the degree of agglutination of red blood cell (RBC). Two measuring methods were proposed: impedimetric measurement and electroanalytical measurement.

View Article and Find Full Text PDF

Dye-sensitized solar cell (DSSC) is a potential candidate to replace conventional silicon-based solar cells because of high efficiency, cheap cost, and lower energy consumption in comparison with silicon chip manufacture. In this report, mixed-phase (anatase and rutile nanoparticles) TiO photoanode was synthesized to investigate material characteristics, carriers transport, and photovoltaic performance for future DSSC application. Field-emission scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL), and UV-visible spectroscopy were used to characterize mixed TiO particles.

View Article and Find Full Text PDF

Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments.

View Article and Find Full Text PDF

The principle of immobilized metal affinity chromatography (IMAC) has been recently implemented for protein microarrays for the study of protein abundance and function. Ni-Co film fabricated by electrodeposition is a novel microarray surface in an alloy type for immobilizing histidine-tagged proteins based on IMAC. In this paper, the effects of crystallographic structures and surface properties of Ni-Co coatings, with and without the annealing process, on the immobilization of histidine-tagged proteins were systematically investigated.

View Article and Find Full Text PDF
Article Synopsis
  • - Protein microarrays enable efficient analysis of protein levels and functions, with the proper surface for immobilizing proteins being crucial for studying molecular interactions.
  • - The study focused on a Ni-Co alloy-coated chip, which effectively binds histidine-tagged proteins due to its unique bi-metallic properties that vary under different electroplating conditions.
  • - Various tests, such as ESCA and XRD, showed that key elements and structural properties of the Ni-Co chip enhance its ability to adsorb proteins, suggesting that its design supports specific binding through interactions with the proteins.
View Article and Find Full Text PDF

This article presents design and testing of a microfluidic platform for immunoassay. The method is based on sandwiched ELISA, whereby the primary antibody is immobilized on nitrocelluose and, subsequently, magnetic beads are used as a label to detect the analyte. The chip takes approximately 2 h and 15 min to complete the assay.

View Article and Find Full Text PDF

Most protein microarrays based on the theory of immobilized metal affinity chromatography (IMAC) were fabricated using the chelator or compound of mono-metallic ion, such as Ni(2+), to capture the histidine-tagged protein. In this study, a novel protein chip with Ni-Co alloy layer fabricated on the substrate of printed circuit board by electrodeposition was developed. It is an innovative microarray surface with bi-metallic elements, i.

View Article and Find Full Text PDF

This paper presents a multi-well membrane fabricated using polydimethylsiloxane (PDMS) as a part of a microarray biochip that allows dividable incubation chambers to be provided on a single chip. The conditions of the forming temperature, time, and mixing proportion of the materials were investigated to obtain optimal physical absorption with the surface of the chip substrate. To verify the properties of the multi-well chip, immunoassays were performed by the alpha-1-fetoprotein (AFP) antigen sandwich experiment.

View Article and Find Full Text PDF