Publications by authors named "Yaw S Tan"

Article Synopsis
  • - This study introduces DeepRSMA, a new deep learning method designed to predict RNA-small molecule affinity (RSMA), which is vital for developing RNA-targeted drugs for diseases.
  • - DeepRSMA utilizes advanced techniques like nucleotide-level and atomic-level feature extraction, as well as a Transformer-based cross-fusion module, to effectively analyze RNA and small molecules from different perspectives.
  • - The results indicate that DeepRSMA outperforms existing methods, providing insights that could assist in designing effective RNA-targeted therapies, with the code and data accessible for public use.
View Article and Find Full Text PDF

This review explores the potential of biomolecule-based nanomaterials, , protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules.

View Article and Find Full Text PDF

HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq.

View Article and Find Full Text PDF
Article Synopsis
  • The Eyes Absent proteins (EYA1-4) are unique tyrosine phosphatases that promote tumors in various cancers, but their specific targets were not well understood until now.
  • This study identifies Polo-like kinase 1 (PLK1) as a key substrate for EYA4 and EYA1, specifically focusing on a phosphorylation site (pY445) that is crucial for cell cycle progression and centrosome function.
  • By reducing EYA1 and EYA4 levels or inhibiting their phosphatase activity, PLK1 activation is significantly decreased, leading to defects in mitosis and increased cell death, highlighting the importance of EYA phosphatases in cancer cell regulation.
View Article and Find Full Text PDF

Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53.

View Article and Find Full Text PDF

The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself.

View Article and Find Full Text PDF

Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis.

View Article and Find Full Text PDF

Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging.

View Article and Find Full Text PDF

Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS by harnessing MoS nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy.

View Article and Find Full Text PDF

Nucleic acid aptamers as antibody alternatives bind specifically to target molecules. These aptamers are generated by isolating candidates from libraries with random sequence fragments, through an evolutionary engineering system. We recently reported a high-affinity DNA aptamer generation method that introduces unnatural bases (UBs) as a fifth letter into the library, by genetic alphabet expansion.

View Article and Find Full Text PDF

Changes in lipid composition and structure during cell development can be markers for cell apoptosis or various diseases such as cancer. Although traditional fluorescence techniques utilising molecular probes have been studied, these methods are limited in studying these micro-changes as they require complex probe preparation and cannot be reused, making cell monitoring and detection challenging. Here, we developed a direct current (DC) resistance sensor based on two-dimensional (2D) molybdenum disulfide (MoS) nanosheets to enable cancer cell-specific detection dependent on micro-changes in the cancer cell membrane.

View Article and Find Full Text PDF

Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing significance of molecular medicine and genetic engineering necessitates advanced electroporation technologies to enhance cell membrane permeability.
  • The study focuses on using nanosecond alternating-current (AC) stimulation to control cancer cell membrane permeabilization, revealing a longer recovery time compared to traditional methods and improved conductance with more pulses.
  • Findings emphasize the promising potential of low-power, high-performance electroporation systems for future applications in cell engineering and molecular treatments.
View Article and Find Full Text PDF

The identification and characterization of binding sites is a critical component of structure-based drug design (SBDD). Probe-based/cosolvent molecular dynamics (MD) methods that allow for protein flexibility have been developed to predict ligand binding sites. However, cryptic pockets that appear only upon ligand binding and occluded binding sites with no access to the solvent pose significant challenges to these methods.

View Article and Find Full Text PDF

Aims/hypothesis: We studied the effects of heterozygous human INS gene mutations on insulin secretion, endoplasmic reticulum (ER) stress and other mechanisms in both MIN6 and human induced pluripotent stem cells (hiPSC)-derived beta-like cells, as well as the effects of prolonged overexpression of mutant human INS in MIN6 cells.

Methods: We modelled the structure of mutant C109Y and G32V proinsulin computationally to examine the in silico effects. We then overexpressed either wild-type (WT), mutant (C109Y or G32V), or both WT and mutant human preproinsulin in MIN6 cells, both transiently and stably over several weeks.

View Article and Find Full Text PDF

Hypothesis: Carbon nanotubes (CNTs) represent a novel platform for cellular delivery of therapeutic peptides. Chemically-functionalized CNTs may enhance peptide uptake by improving their membrane targeting properties.

Experiments: Using coarse-grained (CG) molecular dynamics (MD) simulations, we investigate membrane interactions of a peptide conjugated to pristine and chemically-modified CNTs.

View Article and Find Full Text PDF

Cyclisation is a common synthetic strategy for enhancing the therapeutic potential of peptide-based molecules. While there are extensive studies on peptide cyclisation for reinforcing regular secondary structures such as α-helices and β-sheets, there are remarkably few reports of cyclising peptides which adopt irregular conformations in their bioactive target-bound state. In this review, we highlight examples where cyclisation techniques have been successful in stabilising irregular conformations, then discuss how the design of cyclic constraints for irregularly structured peptides can be informed by existing β-strand stabilisation approaches, new computational design techniques, and structural principles extracted from cyclic peptide library screening hits.

View Article and Find Full Text PDF

Heterozygous HNF1A gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal HNF1A mutation on pancreatic function.

View Article and Find Full Text PDF

Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability.

View Article and Find Full Text PDF

Binding site identification and characterization is an important initial step in structure-based drug design. To account for the effects of protein flexibility and solvation, several cosolvent molecular dynamics (MD) simulation methods that incorporate small organic molecules into the protein's solvent box to probe for binding sites have been developed. However, most of these methods are highly inefficient, as they allow for the use of only one probe type at a time, which means that multiple sets of simulations have to be performed to map different types of binding sites.

View Article and Find Full Text PDF

α,α'-Disubstituted amino acids serve as important non-proteinogenic amino acids in the construction of stabilized helical peptides. To expand the repertoire of α,α'-disubstituted amino acids, chiral alkenyl-containing cyclopropane amino acids were synthesized via a two-step olefination and cyclopropanation procedure. Herein, we report the first example of the use of alkenyl cyclopropane building blocks to constrain MDM2-targeting helical peptides.

View Article and Find Full Text PDF

All-hydrocarbon, , stapled peptide inhibitors of the p53-Mdm2 interaction have emerged as promising new leads for cancer therapy. Typical chemical synthesis olefin metathesis results in the formation of both - and -isomers, an observation that is rarely disclosed but may be of importance in targeting PPI. In this study, we evaluated the effect of staple geometry on the biological activity of five p53-reactivating peptides.

View Article and Find Full Text PDF

Stapled α-helical peptides represent an emerging superclass of macrocyclic molecules with drug-like properties, including high-affinity target binding, protease resistance, and membrane permeability. As a model system for probing the chemical space available for optimizing these properties, we focused on dual Mdm2/MdmX antagonist stapled peptides related to the p53 N-terminus. Specifically, we first generated a library of ATSP-7041 (Chang et al.

View Article and Find Full Text PDF

Herein, we describe the development of a novel staple with an electrophilic warhead to enable the generation of stapled peptide covalent inhibitors of the p53-MDM2 protein-protein interaction (PPI). The peptide developed showed complete and selective covalent binding resulting in potent inhibition of p53-MDM2 PPI.

View Article and Find Full Text PDF

The discovery of new Protein-Protein Interaction (PPI) modulators is currently limited by the difficulties associated with the design and synthesis of selective small molecule inhibitors. Peptides are a potential solution for disrupting PPIs; however, they typically suffer from poor stability and limited tissue penetration hampering their wide spread use as new chemical biology tools and potential therapeutics. In this work, a combination of CuAAC chemistry, molecular modelling, X-ray crystallography, and biological validation allowed us to develop highly functionalised peptide PPI inhibitors of the protein CK2.

View Article and Find Full Text PDF