Publications by authors named "Yavor HadzHiev"

The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • In Europe, rodent studies are the main method used to assess neurotoxicity, but they are expensive and raise ethical concerns, leading many to seek alternatives.
  • There is a growing public demand for safer chemicals, as many on the market haven't been thoroughly tested for neurotoxic effects, prompting research into New Approach Methods (NAMs) to replace animal testing.
  • The European Partnership for the Assessment of Risks from Chemicals (PARC) is working on NAMs to evaluate neurotoxicity, aiming to create faster and cheaper testing methods that can help regulatory agencies and industries improve safety assessments.
View Article and Find Full Text PDF

The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible knock out (KO) results in the formation of a Taf7-less TFIID complex, while KO leads to serious defects within the TFIID assembly pathway.

View Article and Find Full Text PDF

Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues.

View Article and Find Full Text PDF

In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood.

View Article and Find Full Text PDF

Cap methyltransferases (CMTrs) methylate the 2' position of the ribose (cOMe) of cap-adjacent nucleotides of animal, protist, and viral mRNAs. Animals generally have two CMTrs, whereas trypanosomes have three, and many viruses encode one in their genome. In the splice leader of mRNAs in trypanosomes, the first four nucleotides contain cOMe, but little is known about the status of cOMe in animals.

View Article and Find Full Text PDF
Article Synopsis
  • * The consortium developed a central repository that brings together over 1,800 genomic data sets to enhance the understanding of zebrafish development.
  • * They identified 140,000 regulatory elements and explored their unique chromatin features, linking zebrafish data to mouse genomics for broader research implications.
View Article and Find Full Text PDF

In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening.

View Article and Find Full Text PDF

Here, we describe a fast and straightforward methodology to in vivo detect transcriptional activity in the early zebrafish germ line. We report how fluorescently labeled morpholinos, targeted to nascent early transcripts, can be used to track the onset of transcriptional events during early embryogenesis. This method could be applied to any tagged cell line in a developing early zebrafish embryo as long as the gene of interest is expressed at high enough level for morpholino detection and is expressed at the first and main wave of genome activation, for which the protocol has been verified.

View Article and Find Full Text PDF

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11.

View Article and Find Full Text PDF

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes.

View Article and Find Full Text PDF
Article Synopsis
  • Most metazoan embryos, including zebrafish, experience rapid cell divisions that are transcriptionally silent until a stage called the mid-blastula transition (MBT), but some genes are activated earlier.
  • Researchers identified and analyzed unique transcription compartments responsible for early gene expression in zebrafish using a innovative real-time imaging technique.
  • These compartments, which contain nascent RNAs and active Polymerase II, play a significant role in the early embryonic transcription process before MBT and help create a supportive environment for gene activation.
View Article and Find Full Text PDF

Environmental estrogens are a serious concern worldwide due to their ubiquity and adverse ecotoxicological and health effects. Chemical structure of these substances is highly diverse, therefore estrogenicity cannot be predicted on the basis of molecular structure. Furthermore, estimation of estrogenicity of environmental samples based on chemical analytics of suspects is difficult given the complex interaction of chemicals and the impact on estrogenicity.

View Article and Find Full Text PDF

In the version of this article initially published, the legends for Supplementary Figs. 4-8 and 10-14 contained errors. The Supplementary Figure legends have been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Enhancers function as DNA logic gates and may control specialized functions of billions of neurons. Here we show a tailored program of noncoding genome elements active in situ in physiologically distinct dopamine neurons of the human brain. We found 71,022 transcribed noncoding elements, many of which were consistent with active enhancers and with regulatory mechanisms in zebrafish and mouse brains.

View Article and Find Full Text PDF

Pufferfish such as fugu and tetraodon carry the smallest genomes among all vertebrates and are ideal for studying genome evolution. However, comparative genomics using these species is hindered by the poor annotation of their genomes. We performed RNA sequencing during key stages of maternal to zygotic transition of Tetraodon nigroviridis and report its first developmental transcriptome.

View Article and Find Full Text PDF

Herein we present several strategies for testing the function of cis-regulatory elements using the PhiC31 integrase system. Firstly, we present two different strategies to analyze the activity of candidate enhancer elements. Targeted integration of candidate enhancers into the same genomic location circumvents the variability-associated random integration and position effects.

View Article and Find Full Text PDF

Background: Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis.

View Article and Find Full Text PDF

Pufferfish species of the Tetraodontidae family carry the smallest genomes among vertebrates. Their compressed genomes are thought to be enriched for functional DNA compared to larger vertebrate genomes, and they are important models for comparative genomics. The significance of pufferfish as model organisms in comparative genomics is due to the availability of two sequenced genomes, that of spotted green pufferfish (Tetraodon nigroviridis) and fugu (Takifugu rubripes).

View Article and Find Full Text PDF

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle.

View Article and Find Full Text PDF

Zebrafish transgenesis is increasingly popular owing to the optical transparency and external development of embryos, which provide a scalable vertebrate model for in vivo experimentation. The ability to express transgenes in a tightly controlled spatio-temporal pattern is an important prerequisite for exploitation of zebrafish in a wide range of biomedical applications. However, conventional transgenesis methods are plagued by position effects: the regulatory environment of genomic integration sites leads to variation of expression patterns of transgenes driven by engineered cis-regulatory modules.

View Article and Find Full Text PDF

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo.

View Article and Find Full Text PDF

Zebrafish are emerging as a model to study steroid hormone action and associated disease. However, steroidogenesis in zebrafish is not well characterized. Mammalian P450 side-chain cleavage enzyme (CYP11A1) catalyzes the first step of steroidogenesis, the conversion of cholesterol to pregnenolone.

View Article and Find Full Text PDF

Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes.

View Article and Find Full Text PDF