The spin-orbit coupling in inorganic perovskite materials containing heavy elements causes interesting electronic characteristics such as Rashba and Dresselhaus effects. Several studies have reported significant band splitting in the presence of asymmetry, while the impacts of the external field strength, surface termination on the electronic structure still need to be resolved. In the current study, a systematic relation between the external parameters and the band splitting in CsPbI slabs is clarified through first-principles calculations.
View Article and Find Full Text PDFDensity functional theory (DFT) calculations were applied to study the ability of B to adsorb HS, SO, SO, CHSH, (CH)S, and CHS gases. Several exchange-correlation including B97D, PBE, B3LYP, M062X, and WB97XD were utilized to evaluate adsorption energies. The initial results showed that boundary boron atoms are the most appropriate interaction sites.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2021
Fingernail as a biodosimetry material, analyzed by the EPR technique, has attracted great attention in several experimental studies. One of the most challenging issues that should be addressed is additional signals, masking the radiation-induced signals (RIS) in EPR dosimetry analyses. In this work, we conducted a theoretical study of the RIS radicals and mechanisms to propose robust methods to distinguish the original signal from the irradiated nails' unwanted noise.
View Article and Find Full Text PDFIn this paper, we present a computational study investigating the electronic properties of DNA nucleobases (Adenine, Guanine, Cytosine and Thymine) on χ borophene using a combination of density functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism.The adsorption energy, equilibrium distance, net charge of transfer, and density of states (DOSs) are obtained at different molecule orientations and selective positions.The most stable geometries of DNA molecules on χ borophene are also determined.
View Article and Find Full Text PDFThere is a growing body of experimental work showing that protein aggregates associated with amyloid fibrils feature intrinsic fluorescence. In order to understand the microscopic origin of this behavior observed in non-aromatic aggregates of peptides and proteins, we conducted a combined experimental and computational study on the optical properties of amyloid-derived oligopeptides in the near-UV region. We have focused on a few model systems having charged termini (zwitterionic) or acetylated termini.
View Article and Find Full Text PDFRecently, some new series of heteroleptic ruthenium-based dyes, the so-called RD dyes, were designed and synthesized showing better performances compared to the well-known homoleptic N719. In this work, using the density-functional theory and its time-dependent extension, we have investigated the electronic structure and absorption spectra of these newly synthesized dyes, and compared the results to those of N3 dye to describe the variations of the properties due to the molecular engineering of the ancillary ligand. We have shown that the calculation results of the absorption spectra for these dyes using the PBE0 for the exchange-correlation functional are in better agreement with the experiment than using B3LYP or range-separated CAM-B3LYP.
View Article and Find Full Text PDFIn this work, using the DFT and TDDFT, we have theoretically studied the electronic and optical properties of the two recently synthesized coadsorbents Y1 and Y2, which were aimed to enhance the efficiency of the black dye-sensitized solar cells. To determine the solvatochromic shifts, both the implicit and mixed implicit-explicit models have been used. The connection between the solvatochromic shifts and the changes in dipole moments in the excitation process is discussed.
View Article and Find Full Text PDF