In a previous study, based on a rat model of thoracic spinal cord compression, we demonstrated that cholecalciferol (Vitamin D3), delivered at the dose of 200 IU/kg/day, significantly improved ventilatory frequency and spasticity. In order to confirm the restorative potential of vitamin D, we performed a new study, using a rat model of left cervical hemisection (C2). From Day 1 or Day 7, animals received, during three months, a weekly oral bolus of either cholecalciferol, at the dose of 500 IU/kg/day, or vehicle, namely triglycerides.
View Article and Find Full Text PDFIn 2014, a phase II randomised, double blind clinical trial assessing the efficacy of cholecalciferol (vitamin D3) in patients with a cervical trauma will be set up. This trial stems from previous studies showing that vitamin D supplementation improves functional recovery in rat models of peripheral or central nerve injury. In a first series of experiments, we used a rat model of peripheral nerve trauma to demonstrate the therapeutic efficiency of vitamin D.
View Article and Find Full Text PDFAlthough tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery.
View Article and Find Full Text PDFAdult olfactory ectomesenchymal stem cells (OE-MSCs) and olfactory ensheathing cells (OECs), both from the nasal olfactory lamina propria, display robust regenerative properties when transplanted into the nervous system, but the mechanisms supporting such therapeutic effects remain unknown. Matrix metalloproteinases (MMPs) are an important family of proteinases contributing to cell motility and axonal outgrowth across the extracellular matrix (ECM) in physiological and pathological conditions. In this study, we have characterized for the first time in nasal human OE-MSCs the expression profile of some MMPs currently associated with cell migration and invasiveness.
View Article and Find Full Text PDFOlfactory ensheathing cells (OECs) are unique glia found only in the olfactory system. They retain exceptional plasticity and support olfactory neurogenesis and retargeting across the PNS:CNS boundary in the olfactory system. OECs have been shown to improve functional outcome when transplanted into rodents with spinal cord injury.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are endopeptidases that cleave matrix, soluble and membrane-bound proteins and are regulated by their endogenous inhibitors the tissue inhibitors of MMPs (TIMPs). MMP-2 and MMP-9 are two of the MMPs which are essential to contribute to inflammatory and degenerative processes in injured nerves. The aim of the present study was to examine expression and activities of MMP-2 and MMP-9 in the injured and control groups frog sciatic nerves using gelatin zymography.
View Article and Find Full Text PDFAstrocytes play an active role in the central nervous system and are critically involved in astrogliosis, a homotypic response of these cells to disease, injury, and associated neuroinflammation. Among the numerous molecules involved in these processes are the matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, secreted or membrane-bound, that regulate by proteolytic cleavage the extracellular matrix, cytokines, chemokines, cell adhesion molecules, and plasma membrane receptors. MMP activity is tightly regulated by the tissue inhibitors of MMPs (TIMPs), a family of secreted multifunctional proteins.
View Article and Find Full Text PDF