Publications by authors named "Yatao Zhang"

Thin-film composite (TFC) membranes, featuring nanoscale film thickness and customizable pore structures, hold promise for solute-solute separations. However, achieving on-demand molecular sieving requires fine control over the membrane microstructure. Here, the concept of physical and chemical dual confinement (PCDC) is introduced to fabricate loose-structured TFC membranes via confined interfacial polymerization (IP).

View Article and Find Full Text PDF

Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified stimulated emission from a CsPbBr SS/Ag hybrid microcavity with a low threshold of 0.

View Article and Find Full Text PDF

Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations.

View Article and Find Full Text PDF

Heartbeats classification is a crucial tool for arrhythmia diagnosis. In this study, a multi-feature pseudo-color mapping (MfPc Mapping) was proposed, and a lightweight FlexShuffleNet was designed to classify heartbeats. MfPc Mapping converts one-dimensional (1-D) electrocardiogram (ECG) recordings into corresponding two-dimensional (2-D) multi-feature RGB graphs, and it offers good excellent interpretability and data visualization.

View Article and Find Full Text PDF

Heavy metal ion wastewater is a pressing and inescapable issue that is closely related to human health and ecological security due to its toxicity, carcinogenicity, and the unmanageable property of this type of wastewater. Metal-Organic Frameworks (MOFs) are a class of crystalline nanoporous materials with flexible designability and controllability, showing great potential in the field of adsorption and purification of heavy metals in wastewater. In this Perspective, we first discuss the harm of different heavy metal ions and briefly expound virtues of MOFs for pollutant adsorption.

View Article and Find Full Text PDF

Visualizing the decision-making process is a key aspect of research regarding explainable arrhythmia recognition. This study proposed a visualized lead selection method to classify arrhythmia for multi-lead ECG signals. The proposed method has several advantages, as it uses a visualized approach to select effective leads, avoiding redundant leads and invalid information.

View Article and Find Full Text PDF

Prognostic risk prediction is pivotal for clinicians to appraise the patient's esophageal squamous cell cancer (ESCC) progression status precisely and tailor individualized therapy treatment plans. Currently, CT-based multi-modal prognostic risk prediction methods have gradually attracted the attention of researchers for their universality, which is also able to be applied in scenarios of preoperative prognostic risk assessment in the early stages of cancer. However, much of the current work focuses only on CT images of the primary tumor, ignoring the important role that CT images of lymph nodes play in prognostic risk prediction.

View Article and Find Full Text PDF

Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water.

View Article and Find Full Text PDF

Membranes with ultrafast molecular separation ability in organic solvents can offer unprecedented opportunities for efficient and low-cost solvent recovery in industry. Herein, a graphene-like polymer carbon nitride nanosheet (PCNN) with a low-friction surface was applied as the main membrane building block to boost the ultrafast transport of the solvent. Meanwhile, inspired by the concept of "couple hardness with softness", soft and flexible graphene oxide (GO) was chosen to fix the random stack of the rigid PCNN and tailor the lamellar structure of the PCNN membrane.

View Article and Find Full Text PDF

Aggregation of filler particles during the formation of mixed matrix membranes is difficult to avoid when filler loadings exceed a 10-15 wt %. Such agglomeration usually leads to poor membrane performance. In this work, using a ZIF-67 metal-organic framework (MOF) as filler along with surface modification of Ag tz to improve processability and selective olefin adsorption, we demonstrate that highly loaded with a very low agglomeration degree membranes can be synthesized displaying unmatched separation selectivity (39) for C H /C H mixtures and high permeability rates (99 Barrer), far surpassing previous reports in the literature.

View Article and Find Full Text PDF

, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of genome sequence has hampered its development and utilization.

View Article and Find Full Text PDF

The directional arrangement of HO molecules can effectively regulate the ordered protons transfer to improve transport efficiency, which can be controlled by the interaction between materials and HO. Herein, a strategy to build a stable hydration layer in metal-organic framework (MOF) platforms, in which hydrophilic centers that can manipulate HO molecules are implanted into MOF cavities is presented. The rigid grid-Ni-MOF is selected as the supporting material due to the uniformly distributed cavities and rigid structures.

View Article and Find Full Text PDF

Nanosheets derived from two-dimensional covalent organic frameworks (2D COFs) are increasingly desirable in various fields. While breakthroughs in the chemical and physical delamination of 2D COFs are rising, precisely regulating the growth of the COF nanosheets has not been realized yet. Herein, we report an effective strategy of polymer-manipulated crystallization to accurately control the growth of COF nanosheets.

View Article and Find Full Text PDF

Ceramic membranes have been increasingly employed in water treatment owing to their merits such as high-stability, anti-oxidation, long lifespan and environmental friendliness. The application of ceramic membranes mainly focuses on microfiltration and ultrafiltration processes, and some precise separation can be achieved by introducing novel porous materials with superior selectivity. Recently, metal-organic frameworks (MOFs) have developed a wide spectrum of applications in the fields of the environment, energy, water treatment and gas separation due to the diversity and tunable advantages of metal clusters and organic ligands.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation harnessing solar energy on a water surface provides a sustainable and economic means to efficiently capture freshwater from nontraditional water sources. Endowed with a hierarchical porous structure and mechanical stability, wood-based evaporators represent a renewable alternative to petroleum-based materials. Nonetheless, incidental inferiorities of a low evaporation rate and weak interfacial strength are challenging to overcome.

View Article and Find Full Text PDF

Membranes with ultrapermeability for CO are desired for future large-scale carbon capture projects, because of their excellent separative productivity and economic efficiency. Herein, we demonstrate that a membrane with ultrapermeability for CO can be constructed by combining N/O para-doped noble carbons, CNO, with high-permeability polymer PIM-1. The optimal PIM-1/CNO membranes exhibit superior CO permeability (22110 Barrer) with a CO/N selectivity of 15.

View Article and Find Full Text PDF

Background And Objective: Automatic recognition of wearable dynamic electrocardiographic (ECG) signals is a difficult problem in biomedical signal processing. However, with the widespread use of long-range ambulatory ECG, a large number of real-time ECG signals are generated in the clinic, and it is very difficult for clinicians to perform timely atrial fibrillation (AF) diagnosis. Therefore, developing a new AF diagnosis algorithm can relieve the pressure on the healthcare system and improve the efficiency of AF screening.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment.

View Article and Find Full Text PDF

One scalable and facile dip-coating approach was utilized to construct a thin CO-selection layer of Pebax/PEGDA-MXene on a hollow fiber PVDF substrate. An interlayer spacing of 3.59 Å was rationally designed and precisely controlled for the MXene stacks in the coated layer, allowing efficient separation of the CO (3.

View Article and Find Full Text PDF

The application of membrane-based separation processes for propylene/propane (C H /C H ) is extremely promising and attractive as it is poised to reduce the high operation cost of the established low temperature distillation process, but major challenges remain in achieving high gas selectivity/permeability and long-term membrane stability. Herein, a C H facilitated transport membrane using trisilver pyrazolate (Ag pz ) as a carrier filler is reported, which is uniformly dispersed in a polymer of intrinsic microporosity (PIM-1) matrix at the molecular level (≈15 nm), verified by several analytical techniques, including 3D-reconstructed focused ion beam scanning electron microscropy (FIB-SEM) tomography. The π-acidic Ag pz combines preferentially with π-basic C H , which is confirmed by density functional theory calculations showing that the silver ions in Ag pz form a reversible π complex with C H , endowing the membranes with superior C H affinity.

View Article and Find Full Text PDF

Detecting atrial fibrillation (AF) of short single-lead electrocardiogram (ECG) with low signal-to-noise ratio (SNR) is a key of the wearable heart monitoring system. This study proposed an AF detection method based on feature fusion to identify AF rhythm (A) from other three categories of ECG recordings, that is, normal rhythm (N), other rhythm (O), and noisy (∼) ECG recordings. So, the four categories, that is, N, A, O, and ∼ were identified from the database provided by PhysioNet/CinC Challenge 2017.

View Article and Find Full Text PDF

Microporous organic nanotubes (MONs) hold considerable promise for designing molecular-sieving membranes because of their high microporosity, customizable chemical functionalities, and favorable polymer affinity. Herein, we report the use of MONs derived from covalent organic frameworks to engineer 15-nm-thick microporous membranes via interfacial polymerization (IP). The incorporation of a highly porous and interpenetrated MON layer on the membrane before the IP reaction leads to the formation of polyamide membranes with Turing structure, enhanced microporosity, and reduced thickness.

View Article and Find Full Text PDF

Background: Safe and effective analgesia strategy remains one of the priorities for pediatric inguinal hernia treatment.

Aim: To explore safety and efficacy of dexmededomidine monotherapy for postoperative analgesia in children who received laparoscopic unilateral internal inguinal ring ligation.

Methods: This randomized single-center controlled trial included 390 children (aged 1-3 years, ASA grade I-II), randomly divided into a dexmededomidine group (D group), a dexmededomidine + sufentanil group (DS group), and a sufentanil group (S group).

View Article and Find Full Text PDF

Trade-off between permeability and nanometer-level selectivity is an inherent shortcoming of membrane-based separation of molecules, while most highly porous materials with high adsorption capacity lack solution processability and stability for achieving adsorption-based molecule separation. We hereby report a hydrophilic amidoxime modified polymer of intrinsic microporosity (AOPIM-1) as a membrane adsorption material to selectively adsorb and separate small organic molecules from water with ultrahigh processing capacity. The membrane adsorption capacity for Rhodamine B reaches 26.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have evinced a potential solution that promises for fast and efficient molecular separation due to the presence of orderly arranged pores and regulable pore apertures. Herein, the synthesized COF (TPB-DMTP-COF) with the pore aperture matching the pore size of the nanofiltration (NF) membrane was utilized to modulate the physicochemical characters of the polyamide (PA) membranes. It is demonstrated that COFs with superior polymer affinity and hydrophilicity not only circumvent the nonselective interfacial cavities but also improve the hydrophilicity of the resultant thin-film nanocomposite (TFN) membranes.

View Article and Find Full Text PDF