This paper presented a review of the literature on the human thermal comfort model, which can be employed to predict the response of a human towards the environmental surroundings. An important premise of this paper is that governments in tropical regions have taken proactive action in minimizing energy consumption by air-conditioning through elevated room temperature. However, would such an action worsen the quality of interior conditions, particularly the thermal comfort? To answer this question, developing a human thermal comfort model under stratum ventilation mode can become a reference model for air-conditioning system design in all tropical buildings and indirectly reduce the emission of carbon dioxide (CO) from heating, ventilation, and air-conditioning (HVAC) system that caused a warmer environment.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2020
A realistic three-dimensional (3D) computational model of skin flap closures using Asian-like head templates from two different genders, male and female, has been developed. The current study aimed to understand the biomechanics of the local flap designs along with the effect of wound closures on the respective genders. Two Asian head templates from opposite genders were obtained to use as base models.
View Article and Find Full Text PDFJ Environ Health Sci Eng
December 2018
The current case study was conducted to identify the causes of environmental health issues in the office space associated with the existing Underfloor Air Distribution (UFAD) system in a high-rise office building in the tropics. The causes of the indoor environmental quality degradation are the key to resolve the environmental health issues. Thus, the parameters such as the indoor air temperature, relative humidity (RH), relative air velocity, carbon monoxide (CO), carbon dioxide (CO), formaldehyde, total volatile organic compound (TVOC) and particulate matter (PM) were evaluated in five office spaces.
View Article and Find Full Text PDFThis study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA.
View Article and Find Full Text PDFThis study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%).
View Article and Find Full Text PDFThis study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent.
View Article and Find Full Text PDFThis study aimed to assess the performance of different longitudinal functionally graded femoral prostheses. This study was also designed to develop an appropriate prosthetic geometric design for longitudinal functionally graded materials. Three-dimensional models of the femur and prostheses were developed and analyzed.
View Article and Find Full Text PDF