Publications by authors named "Yasuyuki Sugishita"

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease with obstructed airflow and frequently causes secondary mild-moderate pulmonary hypertension (PH). However, a low proportion (1%-5%) of COPD patients develop severe therapy-resistant PH, and it is crucial to determine whether the patient has another disease capable of causing severe PH, including pulmonary arterial hypertension.Here, we describe a case of a 71-year-old male with COPD complicated by severe PH and right heart failure.

View Article and Find Full Text PDF

Background: The increase in inward current, primarily L-type Ca2+ current, facilitates torsades de pointes (TdP). Because human atrial natriuretic peptide (ANP) moderates the L-type Ca2+ current, in our study it was hypothesized that ANP counteracts TdP.

Methods And Results: We tested the effect of ANP, guanosine 3', 5'-cyclic monophosphate analogue (8-bromo cGMP) and hydralazine on the occurrence of TdP in a rabbit model.

View Article and Find Full Text PDF

The embryonic cardiac outflow tract (OFT) connects the developing ventricles with the aortic sac. In birds and mammals, OFT cardiomyocytes are generated from a "secondary (anterior)," heart-forming field well after the formation of the primitive heart tube. The OFT cardiomyocytes have unique properties and developmental fates as compared with the myocytes of the atrial and ventricular chambers.

View Article and Find Full Text PDF

We proposed a model in which myocardial hypoxia triggers the apoptosis-dependent remodeling of the avian outflow tract (OFT) in the transition of the embryo to a dual circulation. In this study, we examined hypoxia-dependent signaling in cardiomyocyte apoptosis and outflow tract remodeling. The hypoxia-inducible transcription factor HIF-1alpha was specifically present in the nuclei of OFT cardiomyocytes from stages 25-32, the period of hypoxia-dependent OFT remodeling.

View Article and Find Full Text PDF

The embryonic cardiac outflow myocardium originates from a secondary heart-forming field to connect the developing ventricles with the aortic sac. The outflow tract (OFT) subsequently undergoes complex remodeling in the transition of the embryo to a dual circulation. In avians, elimination of OFT cardiomyocytes by apoptosis (stages 25-32) precedes coronary vasculogenesis and is necessary for the shortening of the OFT and the posterior rotation of the aorta.

View Article and Find Full Text PDF

Beta-adrenergic stimulation and the resultant Ca(2+) load both seem to be associated with progression of heart failure as well as hypertrophy. Because the alpha(1)-, beta(1,2)-blocker, carvedilol, has been shown to be outstandingly beneficial in the treatment of heart failure, its direct effects on intracellular calcium ion concentration ([Ca(2+)](i)), including antagonism to isoproterenol, in ventricular myocytes were investigated and then compared with a selective beta(1)-blocker, atenolol, and a non-selective beta(1,2)-blocker, timolol. At 1-300 nmol/L, carvedilol decreased the amplitude of [Ca(2+)] (i) by approximately 20% independently of its concentration, which was a similar effect to timolol.

View Article and Find Full Text PDF