It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe.
View Article and Find Full Text PDFFluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm) complex on a reconstituted thin filament. We generated five single-cysteine mutants in the 146-174 region of rabbit skeletal muscle α-Tm. An energy donor probe was attached to a single-cysteine Tm residue, while an energy acceptor probe was located in actin Gln41, actin Cys374, or the actin nucleotide binding site.
View Article and Find Full Text PDF