We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
View Article and Find Full Text PDFHerein, we report the development of metal-free one/two-pot procedures for the synthesis of benzo[]isoxazol-3(1)-one (benzisoxazolone) heterocycles by designing diaryliodonium salts featuring -ester or nitrile functional groups. These react smoothly with protected hydroxylamines under mild conditions to produce -arylhydroxylamine intermediates, which readily cyclize to give benzisoxazolone derivatives under acidic conditions. This metal-free process maintains the weak N-O bond, tolerates a wide range of diaryliodonium salts and protected hydroxylamines with diverse functional/protecting groups, thereby overcoming the challenges associated with previous transformations.
View Article and Find Full Text PDFChem Commun (Camb)
September 2024
We describe the transition-metal-free coupling for polyfluoroalkoxy arenes using polyfluoroalkoxy borates, which serve as counterions to diaryliodonium salts and transferring mediators of polyfluoroalkoxy groups. This strategy demonstrates high functional group compatibility owing to the low nucleophilicity of the borate mediator, thus offering a practical approach for synthesizing diverse polyfluoroalkoxy arenes.
View Article and Find Full Text PDFα-Fluorinated aryl esters pose a challenge in synthesis via -arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt.
View Article and Find Full Text PDFThree-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation.
View Article and Find Full Text PDFOligosaccharides are involved in numerous biological processes. Achieving optimal anomeric selectivity and regioselectivity remains challenging. Herein, we present a method for the oxidative glycosylation of thioglycosides with hypervalent iodine reagents derived from carboxylic acid to form C-O bonds.
View Article and Find Full Text PDFC-H/N-H bond functionalization for direct intermolecular aryl C-N couplings is a useful synthetic process. In this study, we achieved metal-free cross-dehydrogenative coupling of phenols and anilines with phenothiazines using hypervalent iodine reagents. This method affords selective amination products under mild conditions.
View Article and Find Full Text PDFHigh reactivity of trimethoxyphenyl (TMP)-iodonium(III) acetate for phenol -arylation was achieved. It was first determined that the TMP ligand and acetate anion cooperatively enhance the electrophilic reactivity toward phenol oxygen atoms. The proposed method provides access to various diaryl ethers in significantly higher yields than the previously reported techniques.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
February 2022
Benzolactams have unique biological activity and high utility in the synthesis of valuable compounds with direct applicability to oxindole alkaloids and antibacterial agents. Despite recent advances in organic chemistry and the growing number of reported methods for synthesizing benzolactams, their preparation still requires a multistep process. C-H amination reactions can convert aromatic C(sp)-H bonds directly to C(sp)-N bonds, and this direct approach to C-N bond formation offers effective access to benzolactams.
View Article and Find Full Text PDFThe synthesis of 2-oxygenated dihydrobenzofurans involving the [3 + 2] coupling of quinone monoacetals with vinyl ethers has been realized by tetrabutylammonium triflate catalysis. The reaction involves a new activation method of the acetal moiety in quinone monoacetals under acid-free conditions affording the highly oxygenated dihydrobenzofurans. This new activation mode was achieved by using the triflate anion catalyst for stabilization of the highly reactive cationic intermediate.
View Article and Find Full Text PDFKetene acetal derivatives, such as 1-alkoxyvinyl esters and -silyl ketene acetals, belong to the category of -substituted enols of esters, which easily react with various types of nucleophiles, Nu-H, under neutral conditions to give the corresponding acylated and silylated products in excellent yields only by evaporation of the generated volatile esters. Silyl ketene acetals can be easily synthesized by various simple procedures, whereas 1-alkoxyvinyl esters require an equimolar or catalytic amount of a mercury salt to synthesize them. This drawback prevented the advancement of the chemistry of 1-alkoxyvinyl esters.
View Article and Find Full Text PDFAn oxidation system comprising phenyliodine(III) diacetate (PIDA) and iodosobenzene with inorganic bromide, i.e., sodium bromide, in an organic solvent led to the direct introduction of carboxylic acids into benzylic C-H bonds under mild conditions.
View Article and Find Full Text PDFThe gene encoding the chromatin remodeler CHD8 is the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Heterozygous mutations in CHD8 give rise to ASD that is often accompanied by macrocephaly, gastrointestinal complaints, and slender habitus. Whereas most phenotypes of CHD8 haploinsufficiency likely result from delayed neurodevelopment, the mechanism underlying slender habitus has remained unknown.
View Article and Find Full Text PDFA new type of binaphthyl-based chiral iodide functionalized at positions 8 and 8' of the naphthalene rings has been found as a promising structural motif for the asymmetric hypervalent iodine(III) oxidations, specifically, for the dearomatizing spirocyclization of naphthol carboxylic acids showing expectedly better enantioselectivities versus other atropisomeric biaryls, i.e., a conventionally used binaphthalene having the diiodides in the minor groove.
View Article and Find Full Text PDFThe C-symmetric tetralin-fused 1,4-diiodo-1,3-butadiene derivatives, (Z,Z)-2,3-di(1-iodoalkylidene)tetralin 1a-c, are atropisomeric and can be resolved into the two persistent axially chiral enantiomers by HPLC on a chiral stationary phase. The enantiomerically pure compounds can serve as chiral organocatalysts for dearomatizing spirolactonization to show good performance in up to 73% ee.
View Article and Find Full Text PDFA simple and efficient synthesis of phenol biaryls by the cross-couplings of quinone monoacetals (QMAs) and phenols is reported. The Brønsted acid catalytic system in 1,1,1,3,3,3-hexafluoro-2-propanol was found to be particularly efficient for this transformation. This reaction can be extended to the synthesis of various phenol biaryls, including sterically hindered biaryls, with yields ranging from 58 to 90 % under mild reaction conditions and in a highly regiospecific manner.
View Article and Find Full Text PDFPyrrole-aryl derivatives are important due to their unique biological activities in medicinal chemistry. We now report a new oxidative biaryl coupling for pyrroles and indoles toward various arenes using a hypervalent iodine reagent and an appropriate stabilizer for pyrrolyl iodonium intermediates. The reactions readily provide a variety of desired coupling products in good yields.
View Article and Find Full Text PDFThioglycosides are available donors in glycosylation due to the stability of the anomeric C-S bond under general reaction conditions of protection and deprotection, and offer orthogonality in their activation. We report now that the hypervalent iodine effectively induced glycosylation reaction of thioglycosides with various alcohols. This method features a high efficiency, completion in a short time, and proceeding under very mild conditions.
View Article and Find Full Text PDFRecently, hypervalent iodine reagents have been extensively used in organic synthesis. A variety of reactions available for natural product syntheses have been developed using phenyliodine(III) diacetate (PIDA), phenyliodine(III) bis(trifluoroacetate) (PIFA), and other iodine(III) and (V) reagents. These reactions are expected to have applications in pharmaceutical and agrochemical processes because of their safety, mild reaction conditions, and high yields of pure products.
View Article and Find Full Text PDFThe direct oxidative coupling reaction has been an attractive tool for environmentally benign chemistry. Reported herein is that the hypervalent iodine catalyzed oxidative metal-free cross-coupling reaction of phenols can be achieved using Oxone as a terminal oxidant in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). This method features a high efficiency and regioselectivity, as well as functional-group tolerance under very mild reaction conditions without using metal catalysts.
View Article and Find Full Text PDFThe facile and clean oxidative coupling reaction of pyrroles with azoles has been achieved using the recyclable hypervalent iodine(III) reagents having adamantane structures. These iodine(III) reagents could be recovered from the reaction mixtures by a simple solid-liquid separation, i.e.
View Article and Find Full Text PDFThe benzylic positions of the phthalan and isochroman derivatives (1) as benzene-fused cyclic ethers effectively underwent gold-catalyzed direct azidation using trimethylsilylazide (TMSN3) to give the corresponding 1-azidated products (2) possessing the N,O-acetal partial structure. The azido group of the N,O-acetal behaved as a leaving group in the presence of catalytic iron(III) chloride, and 1-aryl or allyl phthalan and isochroman derivatives were obtained by nucleophilic arylation or allylation, respectively. Meanwhile, a double nucleophilic substitution toward the 1-azidated products (2) occurred at the 1-position using indole derivatives as a nucleophile accompanied by elimination of the azido group and subsequent ring opening of the cyclic ether nucleus produced the bisindolylarylmethane derivatives.
View Article and Find Full Text PDFWe started our hypervalent iodine research about 30 years ago in the mid-1980s. We soon successfully developed the single-electron-transfer oxidation ability of a hypervalent iodine reagent, specifically, phenyliodine(III) bis(trifluoroacetate) (PIFA), toward aromatic rings of phenyl ethers for forming aromatic cation radicals. This was one of the exciting and unexpected events in our research studies so far, and the discovery was reported in 1991.
View Article and Find Full Text PDFMetal-free oxidative C-C coupling by using polyalkoxybenzene-derived diaryliodonium(III) salts as both the oxidant and aryl source has been developed. These salts can induce single-electron-transfer (SET) oxidation to yield electron-rich arenes and subsequently transfer the polyalkoxyphenyl group into in situ generated aromatic radical cations to produce biaryl products. The reaction is promoted by a Lewis acid that activates the iodonium salts.
View Article and Find Full Text PDF