Microalgae are promising platforms for biofuel production. Transcription factors (TFs) are emerging as key regulators of lipid metabolism for biofuel production in microalgae. We previously identified a novel TF MYB1, which mediates lipid accumulation in the green microalga under nitrogen depletion.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) stress response is an evolutionarily conserved mechanism in most eukaryotes. In this response, sterols in the phospholipid bilayer play a crucial role in controlling membrane fluidity and homeostasis. Despite the significance of both the ER stress response and sterols in maintaining ER homeostasis, their relationship remains poorly explored.
View Article and Find Full Text PDFLipid transporters synergistically contribute to oil accumulation under normal conditions in microalgae; however, their effects on lipid metabolism under stress conditions are unknown. Here, we examined the effect of the co-expression of lipid transporters, fatty acid transporters, (FAX1 and FAX2) and ABC transporter (ABCA2) on lipid metabolism and physiological changes in the green microalga under nitrogen (N) starvation. The results showed that the TAG content in over-expressor (OE) was 2.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Several compounds are used to induce the unfolded protein response (UPR) in animals, with different modes of action, but which ER stress-inducing drugs induce ER stress in microalgae or land plants is unclear. In this study, we examined the effects of seven chemicals that were reported to induce ER stress in animals on the growth, UPR gene expression and fatty acid profiles of Chlamydomonas reinhardtii (Chlamydomonas) and Arabidopsis thaliana (Arabidopsis): 2-deoxyglucose, dithiothreitol (DTT), tunicamycin (TM), thapsigargin, brefeldin A (BFA), monensin (MON) and eeyarestatin I.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2022
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO capture, and high amount of biomolecules that are valuable for humans.
View Article and Find Full Text PDFPlant Cell Physiol
September 2022
Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions.
View Article and Find Full Text PDFA-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids.
View Article and Find Full Text PDFPhotosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress.
View Article and Find Full Text PDFPhosphatidylserine (PS) is involved in various cellular processes in yeast and animals. However, PS functions in plants remain unclear. In Arabidopsis, PS is relatively enriched in flower and root tissues, and the genetic disturbance of PS biosynthesis in phosphatidylserine synthase1 (PSS1)/ pss1 heterozygotes induces sporophytic and gametophytic defects during pollen maturation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Lipid droplets (LDs) are intracellular organelles found in a wide range of organisms and play important roles in stress tolerance. During nitrogen (N) starvation, stores large amounts of triacylglycerols (TAGs) inside LDs. When N is resupplied, the LDs disappear and the TAGs are degraded, presumably providing carbon and energy for regrowth.
View Article and Find Full Text PDFGermination requires sufficient water absorption by seeds, but excessive water in the soil inhibits plant growth. We therefore hypothesized that tolerance mechanisms exist that help young seedlings survive and develop in waterlogged conditions. Many ATP-BINDING CASSETTE TRANSPORTER subfamily G (ABCG) proteins protect terrestrial plants from harsh environmental conditions.
View Article and Find Full Text PDFExcessive glucose causes various diseases and decreases lifespan by altering metabolic processes, but underlying mechanisms remain incompletely understood. Here, we show that Lipin 1/LPIN-1, a phosphatidic acid phosphatase and a putative transcriptional coregulator, prevents life-shortening effects of dietary glucose on Caenorhabditis elegans. We found that depletion of lpin-1 decreased overall lipid levels, despite increasing the expression of genes that promote fat synthesis and desaturation, and downregulation of lipolysis.
View Article and Find Full Text PDFThe non-intrinsic ABC proteins ABCI20 and ABCI21 are induced by light under HY5 regulation, localize to the ER, and ameliorate cytokinin-driven growth inhibition in young Arabidopsis thaliana seedlings. The plant ATP-binding cassette (ABC) I subfamily (ABCIs) comprises heterogeneous proteins containing any of the domains found in other ABC proteins. Some ABCIs are known to function in basic metabolism and stress responses, but many remain functionally uncharacterized.
View Article and Find Full Text PDFLow temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature-induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature-induced longevity and proteostasis.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Here, we identified proteins and lipids that function downstream of the ER stress sensor INOSITOL-REQUIRING ENZYME1 (CrIRE1) that contributes to ER stress tolerance in Chlamydomonas (). Treatment with the ER stress inducer tunicamycin resulted in the splicing of a 32-nucleotide fragment of a basic leucine zipper 1 (bZIP1) transcription factor () mRNA by CrIRE1 that, in turn, resulted in the loss of the transmembrane domain in CrbZIP1, and the translocation of CrbZIP1 from the ER to the nucleus.
View Article and Find Full Text PDFMicroalgae constitute a highly diverse group of eukaryotic and photosynthetic microorganisms that have developed extremely efficient systems for harvesting and transforming solar energy into energy-rich molecules such as lipids. Although microalgae are considered to be one of the most promising platforms for the sustainable production of liquid oil, the oil content of these organisms is naturally low, and algal oil production is currently not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established algal model due to its fast growth, high transformation efficiency, and well-understood physiology and to the availability of detailed genome information and versatile molecular tools for this organism.
View Article and Find Full Text PDFIn many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene.
View Article and Find Full Text PDFDespite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids.
View Article and Find Full Text PDFTerrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions.
View Article and Find Full Text PDFGlucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans.
View Article and Find Full Text PDFConcern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive.
View Article and Find Full Text PDFThe pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure.
View Article and Find Full Text PDFAlgal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
Fatty acids, the building blocks of biological lipids, are synthesized in plastids and then transported to the endoplasmic reticulum (ER) for assimilation into specific lipid classes. The mechanism of fatty acid transport from plastids to the ER has not been identified. Here we report that AtABCA9, an ABC transporter in Arabidopsis thaliana, mediates this transport.
View Article and Find Full Text PDF