The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2024
Distinct sex differences in the prevalence and symptoms of abnormal bowel habits in patients with irritable bowel syndrome (IBS) have been reported. We have elucidated the sex differences in the regulation of colorectal motility via the central nervous system. Noxious stimuli in the colorectum of anesthetized male rats enhance colorectal motility by activating monoaminergic neurons in descending pain inhibitory pathways from the brainstem to the lumbosacral spinal cord.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2023
The supraspinal brain regions controlling defecation reflex remain to be elucidated. The purpose of this study was to determine the roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of defecation. For chemogenetic manipulation of specific neurons, we used the double virus vector infection method in rats.
View Article and Find Full Text PDFNoxious stimuli on the colorectum cause colorectal contractions through activation of descending monoaminergic pathways projecting from the supraspinal defecation center to the spinal defecation center. Since it is known that substance P is involved in the response to peripheral noxious stimuli in the spinal cord, we investigated the effects of intrathecally administered substance P at L6-S1 levels on colorectal motility in rats that were anesthetized with α-chloralose and ketamine. Intrathecally administered substance P enhanced colorectal motility, even after transection of the thoracic spinal cord at the T4 level.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2022
Our recent studies have shown that noxious stimuli in the colorectum enhance colorectal motility via the brain and spinal defecation centers in male rats. In female rats, however, noxious stimuli have no effect on colorectal motility. The purpose of this study was to determine whether sex hormones are major contributing factors for sex-dependent differences in neural components of the spinal defecation center.
View Article and Find Full Text PDFThe central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear.
View Article and Find Full Text PDFG protein-coupled receptor (GPR) 37 and GPR37L1 are known to modulate the dopaminergic neuron activity, and recently, they are identified as candidate prosaposin receptors. Intercellular prosaposin is proteolytically processed into four saposins, each of which acts as a sphingolipid hydrolase activator in the lysosome. In contrast, extracellular prosaposin exerts a trophic effect on neurons via GPR37 and GPR37L1.
View Article and Find Full Text PDFMultiple mRNA isoforms are often generated during processing such as alternative splicing of precursor mRNAs (pre-mRNA), resulting in a diversity of generated proteins. Alternative splicing is an essential mechanism for the functional complexity of eukaryotes. Temperature, which is involved in all life activities at various levels, is one of regulatory factors for controlling patterns of alternative splicing.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2019
Am J Physiol Regul Integr Comp Physiol
August 2019
Am J Physiol Gastrointest Liver Physiol
October 2018
Neuronal nuclear antigen (NeuN), discovered in mice brain cell nuclei by Mullen et al. (1992), is used as an excellent marker of post-mitotic neurons in vertebrates. In this study, the expression pattern of NeuN was examined in the Xenopus brain to explore phylogenetic differences in NeuN expression.
View Article and Find Full Text PDF