The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance.
View Article and Find Full Text PDFRegulated organization of the chromosome is essential for faithful propagation of genetic information. In the model bacterium , the replication terminus of the chromosome is spatially arranged in close proximity to the cytokinetic Z-ring during the cell cycle. Although the Z-ring-associated proteins ZapA and ZauP interact with the terminus recognition protein ZapT, the molecular functions of the complex that physically links the terminus and the Z-ring remain obscure.
View Article and Find Full Text PDF