Background: Kaempferol (KMP), a flavonoid in edible plants, exhibits diverse pharmacological effects. Growing body of evidence associates extended lifespan with physical activity (PA) and sleep, but KMP's impact on these behaviors is unclear. This double-blind, placebo-controlled, crossover trial assessed KMP's effects on PA and sleep.
View Article and Find Full Text PDFKaempferol (KMP) is an important flavonoid in many fruits and vegetables. Preclinical studies on KMP have reported its pharmacological effects, including antimicrobial, antioxidant, anti-inflammatory, antitumor, antidiabetic, myocardial protective, and neuroprotective effects. Additionally, some epidemiological studies have revealed a negative association between the consumption of KMP-containing foods and the risk of developing several disorders, such as cancer and cardiovascular diseases.
View Article and Find Full Text PDFKaempferol (KMP) has numerous important biological functions, and we recently showed that it remarkably increased intracellular adenosine triphosphate (ATP) content in CC myotubes under hypoxic conditions. Since intracellular ATP is generated by aerobic energy metabolism or anaerobic glycolysis, hypoxia inducible factor-1α (HIF-1α) has been shown to be associated with metabolic remodeling and causes metabolic shift from aerobic energy metabolism to anaerobic glycolysis in response to hypoxic conditions. Here, we investigate the effects of KMP under hypoxic conditions on the stabilization of HIF-1α in CC myotubes and its underlying molecular mechanisms.
View Article and Find Full Text PDFAccumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures.
View Article and Find Full Text PDFIntrinsic skin ageing is characterized by atrophy and loss of elasticity. Although the skin hypertrophy induced by photoageing has been studied, the molecular mechanisms of skin atrophy during ageing remain unclear. Here, we report that copper/zinc superoxide dismutase (CuZn-SOD)-deficient mice show atrophic morphology in their skin.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress-related diseases.
View Article and Find Full Text PDFInterleukin (IL)-1beta is a proinflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. We have recently found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, we investigated the ability of UA for inducing IL-1beta production in pMphi from 4 different strains of female mice (C57BL/6J, C3H/He, DDY, and ICR), as well as an established macrophage line (RAW264.
View Article and Find Full Text PDFThere is growing interest in the elucidation of the biological functions of triterpenoids, ubiquitously distributed throughout the plant kingdom, some of which are used as anticancer and anti-inflammatory agents in Asian countries. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is the major component of some traditional medicine herbs and is well known to possess a wide range of biological functions, such as antioxidative, anti-inflammation, and anticancer activities, that are able to counteract endogenous and exogenous biological stimuli. In contrast to these beneficial properties, some laboratory studies have recently revealed that the effects of UA on normal cells and tissues are occasionally pro-inflammatory.
View Article and Find Full Text PDFIL-1beta has been shown to play a pivotal role in the development of inflammatory disorders. We recently found that a natural triterpene, ursolic acid (UA), enhanced MIF release from nonstimulated macrophages. In this study, we examined the effects of UA on the production of several cytokines in resident murine peritoneal macrophages (pMphi).
View Article and Find Full Text PDFBiosci Biotechnol Biochem
April 2006
An anti-inflammatory triterpenoid, ursolic acid (UA), has recently been found unexpectedly to induce the release of a pro-inflammatory mediator in resting macrophages. In this study, we found that topical applications of UA to mouse skin twice a week for 2 weeks significantly enhanced mRNA expression of cyclooxygenase (COX)-1, COX-2, and tumor necrosis factor-alpha, whereas its effect on tumor promotion was unclear.
View Article and Find Full Text PDFOkinawa prefecture in Japan is a distinct area characterized by unique traditional food habits and longevity. Prolonged exposure to activated leukocytes, playing pivotal roles in chronic inflammation-associated carcinogenesis, is known to lead to oxidative and nitrosative damage to macromolecules in the body since they are primary sources of free radicals, such as superoxide anion (O(2)(-)) and nitric oxide (NO). In this study, we estimated anti-oxidative and anti-nitrosative activities of Okinawan food items by employing two cellular experimental systems: (1) phorbol ester-induced O(2)(-) generation from differentiated HL-60 human promyelocytic leukemia cells; and (2) lipopolysaccharide (LPS)-induced NO generation in RAW264.
View Article and Find Full Text PDFMacrophage migration inhibitory factor (MIF) plays some pivotal roles in innate immunity and inflammation. Ursolic acid (UA), an anti-inflammatory triterpene carboxylic acid, was recently reported to induce the release of pro-inflammatory mediators in resting macrophages (Mvarphi). We investigated the effects of UA on MIF protein release in resting RAW264.
View Article and Find Full Text PDFTaste bud cells (TBCs) on soft palates differ from those on tongues in innervation and chemosensitivity. We investigated voltage-gated channels involved in the taste responses of TBCs on mouse soft palates under in-situ tight-seal voltage/current-clamp conditions. Under the cell-attached mode, TBCs spontaneously fired action currents, which were blocked by application of 1 microM TTX to TBC basolateral membranes.
View Article and Find Full Text PDF