Publications by authors named "Yasushi Enokido"

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) β-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer.

View Article and Find Full Text PDF

Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early-onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown.

View Article and Find Full Text PDF

R3HDM1 (R3H domain containing 1) is an uncharacterized RNA-binding protein that is highly expressed in the human cerebral cortex. We report the first case of a 12-year-old Japanese male with haploinsufficiency of R3HDM1. He presented with mild intellectual disability (ID) and developmental delay.

View Article and Find Full Text PDF

Krabbe disease (KD), or globoid cell leukodystrophy, is an inherited lysosomal storage disease with leukodystrophy caused by a mutation in the galactosylceramidase (GALC) gene. The majority of patients show the early onset form of KD dominated by cerebral demyelination with apoptotic oligodendrocyte (OL) death. However, the initial pathophysiological changes in developing OLs remain poorly understood.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway is critical for cellular growth and metabolism. Recently, mosaic or segmental overgrowth, a clinical condition caused by heterozygous somatic activating mutations in PIK3CA, was established as PIK3CA-related overgrowth spectrum (PROS). In this study, we report a Japanese female diagnosed with PROS, who presented with hyperplasia of the lower extremities, macrodactyly, multiple lipomatosis, and sparse hair.

View Article and Find Full Text PDF

Niemann-Pick disease type C (NPC) is an autosomal recessive neurovisceral lipid storage disorder. Two disease-causing genes (NPC1 and NPC2) have been identified. NPC is characterized by neuronal and glial lipid storage and NFTs.

View Article and Find Full Text PDF

During the past two decades, the fundamental mechanism of neuronal cell death has been explained by building on the knowledge obtained from studies of other cell types, such as immune cells and cancer cells. However, recent advances in biotechnology allow us to show much more detailed molecular mechanisms which can reveal characteristics of neuronal cell death distinguished from other cell types, and pathogenesis of neurodevelopmental and neurodegenerative disorders, that may help to develop treatment for various neurological disorders. Here, I will review the recent advances in the research on neuronal cell death associated with neurodevelopmental and neurodegenerative disorders focusing on the defect of DNA repair and of neuron-astrocyte metabolic interaction.

View Article and Find Full Text PDF

DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We identify Ku70, a component of the DNA damage repair complex, as a mediator of the DNA repair dysfunction in mutant Htt-expressing neurons.

View Article and Find Full Text PDF

HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L.

View Article and Find Full Text PDF
Article Synopsis
  • Selective reduction of the mitochondrial protein Omi/HtrA2 occurs specifically in striatal neurons affected by Huntington's disease, while other neurons remain unaffected.
  • Omi/HtrA2 levels decrease when mutant huntingtin is expressed, suggesting a direct relationship between mutant huntingtin and the vulnerability of these neurons.
  • Overexpressing Omi/HtrA2 can protect against cell death caused by mutant huntingtin, indicating its potential role in cell survival in the context of Huntington's disease.
View Article and Find Full Text PDF

CBS is a vitamin B6-dependent transsulfuration enzyme needed to synthesize cysteine from methionine, catalyzing the condensation of serine with homocysteine to form cystathionine. A deficiency of CBS causes homocystinuria (MIM 236200), one of the most prevalent inborn errors, characterized by mental retardation, seizures, psychiatric disturbances, skeletal abnormalities and vascular disorders. Patients with CBS deficiency exhibit a major biochemical abnormality, hyperhomocysteinemia (HHcy), a condition associated with highly elevated plasma homocysteine levels.

View Article and Find Full Text PDF

Nuclear dysfunction is a key feature of the pathology of polyglutamine (polyQ) diseases. It has been suggested that mutant polyQ proteins impair functions of nuclear factors by interacting with them directly in the nucleus. However, a systematic analysis of quantitative changes in soluble nuclear proteins in neurons expressing mutant polyQ proteins has not been performed.

View Article and Find Full Text PDF

The reason why vulnerabilities to mutant polyglutamine (polyQ) proteins are different among neuronal subtypes is mostly unknown. In this study, we compared the gene expression profiles of three types of primary neurons expressing huntingtin (htt) or ataxin-1. We found that heat shock protein 70 (hsp70), a well known chaperone molecule protecting neurons in the polyQ pathology, was dramatically upregulated only by mutant htt and selectively in the granule cells of the cerebellum.

View Article and Find Full Text PDF

Hepatoma-derived growth factor (HDGF) is a nuclear protein homologous to the high-mobility group B1 family of proteins. It is known to be released from cells and to act as a trophic factor for dividing cells. In this study HDGF was increased in spinal motor neurons of a mouse model of motor neuron degeneration, polyglutamine-tract-binding protein-1 (PQBP-1) transgenic mice, before onset of degeneration.

View Article and Find Full Text PDF

Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy.

View Article and Find Full Text PDF

Down's syndrome (DS) or trisomy 21 is the most common genetic cause of mental retardation, and adults with DS develop Alzheimer type of disease (AD). Cystathionine beta-synthase (CBS) is encoded on chromosome 21 and deficiency in its activity causes homocystinuria, the most common inborn error of sulfur amino acid metabolism and characterized by mental retardation and vascular disease. Here, we show that the levels of CBS in DS brains are approximately three times greater than those in the normal individuals.

View Article and Find Full Text PDF

Hyperhomocysteinemia (HHCY) is a consequence of impaired methionine/cysteine metabolism and is caused by deficiency of vitamins and/or enzymes such as cystathionine beta-synthase (CBS). Although HHCY is an important and independent risk factor for cardiovascular diseases that are commonly associated with hepatic steatosis, the mechanism by which homocysteine promotes the development of fatty liver is poorly understood. CBS-deficient (CBS(-/-)) mice were previously generated by targeted deletion of the Cbs gene and exhibit pathological features similar to HHCY patients, including endothelial dysfunction and hepatic steatosis.

View Article and Find Full Text PDF

The modifier of cell adhesion protein (MOCA), or Dock3, initially identified as presenilin-binding protein (PBP), belongs to the Dock180 family of proteins and is localized specifically in neurons. Here we demonstrate that MOCA binds to Rac1 and enhances its activity, which leads to the activation of c-Jun NH(2)-terminal kinase (JNK) and causes changes in cell morphology. Farnesylated MOCA, which is localized in the plasma membrane, enhances the activation of Rac1 and JNK more markedly than wild-type MOCA, and cells expressing farnesylated MOCA show flattened morphology similar to those expressing a constitutive active mutant of Rac1, Rac1Q61L.

View Article and Find Full Text PDF

The molecular mechanism of Bcl-2 phosphorylation and its relationship to Bax is largely unknown. Here we show that the phosphorylation of Bcl-2 is involved in the intracellular translocation of Bax from cytosol to mitochondria in NO-induced neuronal apoptosis. We examined how the phosphorylation of Bcl-2 is regulated during the apoptosis and found it to be mediated by the activation of p38 and ERK, members of the MAPK superfamily.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) is a transmembrane protein whose abnormal processing is associated with the pathogenesis of Alzheimer's disease. In this study, we examined the expression and role of cell-associated APP in primary dorsal root ganglion (DRG) neurons. When dissociated DRG cells prepared from mouse embryos were treated with nerve growth factor (NGF), neuronal APP levels were transiently elevated.

View Article and Find Full Text PDF

PQBP-1 was isolated on the basis of its interaction with polyglutamine tracts. In this study, using in vitro and in vivo assays, we show that the association between ataxin-1 and PQBP-1 is positively influenced by expanded polyglutamine sequences. In cell lines, interaction between the two molecules induces apoptotic cell death.

View Article and Find Full Text PDF