We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target.
View Article and Find Full Text PDFWe present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers).
View Article and Find Full Text PDFThe activation of epidermal growth factor receptor (EGFR) involves the geometrical conversion of the extracellular domain (ECD) from the tethered to the extended forms with the dynamic rearrangement of the relative positions of four subdomains (SDs); however, this conversion process has not yet been thoroughly understood. We compare the two different forms of the X-ray crystal structures of ECD and simulate the ECD conversion process using adiabatic mapping that combines normal mode analysis of the elastic network model (ENM-NMA) and energy optimization. A comparison of the crystal structures reveals the rigidity of the intradomain geometry of the SD-I and -III backbone regardless of the form.
View Article and Find Full Text PDFCa(2+)-binding proteins are widely distributed throughout cells and play various important roles. Calbindin D9k is a member of the EF-hand Ca(2+)-binding protein family. In this study, we examined the binding of Ca(2+) to calbindin D9k in terms of the free energy of solvation, as obtained by 3D reference interaction site model theory, which describes the statistical mechanics of liquids.
View Article and Find Full Text PDFA new approach to investigate a molecular recognition process of protein is presented based on the three-dimensional reference interaction site model (3D-RISM) theory, a statistical mechanics theory of molecular liquids. Numerical procedure for solving the conventional 3D-RISM equation consists of two steps. In step 1, we solve ordinary RISM (or 1D-RISM) equations for a solvent mixture including target ligands in order to obtain the density pair correlation functions (PCF) among molecules in the solution.
View Article and Find Full Text PDFCO escaping pathways of Myoglobin were investigated in terms of 3D distribution function which was calculated by the 3D-RISM theory. The partial molar volume changes through the CO escaping pathways show excellent agreement with those from the experiment.
View Article and Find Full Text PDFIn this article, we present the multicore (mc) QM/MM method, a QM/MM method that can optimize the structure of chromophore aggregate in protein. A QM region is composed of the sum of the QM subregions that are small enough to apply practical electronic structure calculations. QM/MM energy gradient calculations are performed for each QM subregion.
View Article and Find Full Text PDF