Publications by authors named "Yasuo Shikinami"

A bone fixation device made of unsintered hydroxyapatite (u-HA) particles uniformly dispersed in a poly-l-lactide matrix and reinforced by compressive forging (uniformly dispersed composite; UDC) has been clinically applied in several fields. However, it has reported some foreign body reactions over a long implantation period due to its slow bioresorbability. To further enhance its bioresorbability, we developed devices comprising a fibrous assembly of poly-l-lactide only three-dimensionally intertwined with particulate hydroxyapatite/poly-l-lactide composite.

View Article and Find Full Text PDF

Study Design: Experimental animal study.

Objective: To investigate the osteogenic properties of a particulate uncalcined, unsintered hydroxyapatite/polydllactide (u-HA/PdlLA) composite scaffold loaded with bone marrow aspirate (BMA).

Summary Of Background Data: Because of the high morbidity associated with bone graft harvesting, current research in spine surgery has largely focused on bone graft alternatives involving a combination of scaffolds and osteogenic substances.

View Article and Find Full Text PDF

Background Context: In the quest for clinically functional artificial intervertebral discs (AIDs), multidisciplinary technologies have been employed. Existing solid mobile AIDs essentially consist of the superposition of solid plates and core materials; however, it is thought that an ideal surgical AID technology has not yet been developed. To overcome the limitation of these existing AIDs, we developed a unique flexible AID disc system on the basis of our original biomimetic concept.

View Article and Find Full Text PDF

As reported previously, a porous composite of uncalcined hydroxyapatite (u-HA) and poly-DL-lactide (PDLLA) showed excellent osteoconductivity and biodegradability as a bone substitute in rabbit model. In this study, to investigate the usefulness of this composite as a scaffold loaded with cells, we estimated whether this material showed osteogenesis on implantation to extraosseous site. On loading with syngeneic bone marrow cells and implantation into rat dorsal subcutaneous tissue, osteogenesis with enchondral ossification was seen both on and in the material at 3 weeks after implantation.

View Article and Find Full Text PDF

We used a novel composite fibre-precipitation method to create bioactive and bioresorbable cellular cubic composites containing calcium phosphate (CaP) particles (unsintered and uncalcined hydroxyapatite (u-HA), alpha-tricalcium phosphate, beta-tricalcium phosphate, tetracalcium phosphate, dicalcium phosphate dihydrate, dicalcium phosphate anhydrate or octacalcium phosphate) in a poly-D/L-lactide matrix. The CaP particles occupied greater than or equal to 70 wt% (greater than or equal to 50 vol%) fractions within the composites. The porosities of the cellular cubic composites were greater than or equal to 70% and interconnective pores accounted for greater than or equal to 70% of these values.

View Article and Find Full Text PDF

The in vitro multidirectional flexibility analysis was conducted to investigate the initial biomechanical effect of biomimetic artificial intervertebral disc replacement from either anterior or posterior approach in a cadaveric lumbosacral spine model. Two designs of anterior total and posterior subtotal artificial discs were developed using bioactive three-dimensional fabric and bioresorbable hydroxyapatite/poly-l-lactide material (3DF disc). Both models were designed to obtain the stable interface bonding to vertebral endplates with maximum surface area occupation.

View Article and Find Full Text PDF

The biocompatibility and biodegradation of hydroxyapatite (HA)/poly(L-lactide) (PLLA) composite bone implant rods were studied using two types of HA particles as reinforcing fillers, uncalcined-HA (u-HA) or calcined-HA (c-HA). Composite rods of u-HA/PLLA and c-HA/PLLA were implanted into the distal femurs of 25 rabbits. Four of these rabbits lived for more than 5 years after implantation, with one living for 7 years 4 months.

View Article and Find Full Text PDF

We investigated the biocompatibility, osteoconductivity, and biodegradability of a porous composite of hydroxyapatite (HA) and poly-DL-lactide (PDLLA) implanted into rabbit femoral condyles and compared it with porous HA. Six weeks after implantation, the HA/PDLLA was covered with bone and contacted the bone directly. The amount of newly formed bone in the pores was similar in both materials during the examined period.

View Article and Find Full Text PDF

Here we document the complete process of bioresorption and bone replacement of rods made of forged composites of unsintered hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA) implanted in the femoral medullary cavities of rabbits. Bioresorption, osteoconductive bioactivity and bone replacement were compared in three implantation sites. In the first site, the end of the rod was located near the endosteum in the proximal medullary cavity.

View Article and Find Full Text PDF

Object: This in vitro experimental study was conducted to investigate the initial biomechanical effect of artificial intervertebral disc replacement in the cervical spine. The multidirectional flexibility of replaced and adjacent spinal segments were analyzed using a cadaveric cervical spine model.

Methods: The following three cervical reconstructions were sequentially performed at the C5-6 level after anterior discectomy in seven human cadaveric occipitocervical spines: anterior artificial disc replacement with a bioactive three-dimensional (3D) fabric disc (FD); anterior iliac bone graft; and anterior plate fixation with iliac bone graft.

View Article and Find Full Text PDF

The purpose of this study was to examine the efficacy of a combination of artificial cartilage and basic fibroblast growth factor (bFGF) for the repair of large osteochondral defects. The artificial cartilage was a three-dimensional fabric (3-DF) composed of an ultra-high molecular weight polyethylene fiber with a triaxial three-dimensional structure. We implanted 3-DF impregnated with type I collagen gel containing 500 ng of bFGF (bFGF-treated group) or 3-DF impregnated with type I collagen gel alone (non-treated group) into a large full-thickness osteochondral defect (6 x 6 x 3 mm) of the patellar groove of rabbits.

View Article and Find Full Text PDF

Novel spinal interbody fusion cages made of bioactive and bioresorbable composites by a unique forging process were developed. Previous in vitro study demonstrated that these cages marked excellent biomechanical values. The purpose of the present in vivo study was to evaluate the viability and advantage of this forged composite of uncalcined hydroxyapatite/poly L-Lactide (F-u-HA/PLLA) cage radiographically, biomechanically, and histologically, when compared to conventional autologous iliac bone (AIB) and carbon fiber cage (CFC).

View Article and Find Full Text PDF

Object: This 2-year experimental study was conducted to investigate the efficacy of a bioactive three-dimensional (3D) fabric disc for lumbar intervertebral disc replacement. The authors used a bioresorbable spinal fixation rod consisting of a forged composite of particulate unsintered hydroxyapatite/poly-L-lactide acid (HA/PLLA) for stability augmentation. The biomechanical and histological alterations as well as possible device-related loosening were examined at 2 years postoperatively.

View Article and Find Full Text PDF

Osteoconductive and totally bioresorbable spinal/cervical interbody fusion cages were fabricated from a forged composite of raw particulate hydroxyapatite/poly L-lactide (u-HA/PLLA) with an u-HA 40wt% fraction (F-u-HA 40). The mechanical strengths of three types of cages, designed for open-box, screw and cylinder constructs, were compared with those of existing metal and carbon-fiber/polymer cages. Compressive strengths of these composite cages surpassed those of existing metal and carbon-fiber cages.

View Article and Find Full Text PDF

Biodegradation of hydroxyapatite (HA)/poly(L-lactide)(PLLA) composite bone implant rods was studied with the use of two types of HA particles as reinforcing fillers: uncalcined HA (u-HA) or calcined HA (c-HA). Composite rods of u-HA/PLLA and c-HA/PLLA containing 30 or 40% (w/w) HA were implanted in the distal femur of 21 rabbits, and specimens were examined by light microscopy, scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM) 2-4 years later. For u-HA/PLLA, trabecular bone bonding directly onto the rod was maintained for up to 2 years.

View Article and Find Full Text PDF

Study Design: A new cage made from a forged composite of unsintered hydroxyapatite particles and poly-L-lactide (F-u-HA/PLLA) is compared biomechanically with the Ray threaded fusion cage.

Objectives: To compare the stability imparted to the human cadaveric spine by two different threaded cervical cages and the effect of cyclic loading on construct stability.

Summary Of Background Data: Threaded cages have been developed for use in anterior cervical interbody fusions to provide initial stability during the fusion process.

View Article and Find Full Text PDF

Study Design: The bone-bonding characteristic of the new artificial intervertebral disc consisting of bioceramic-coated three-dimensional fabric was evaluated mechanically and histologically in an in vivo sheep model.

Objectives: To investigate the mechanical properties and the histologic appearance of the interface between the three-dimensional fabric disc and the vertebral body, and to evaluate these alterations in vivo under a spinal segmentally mobile condition.

Summary Of Background Data: Bone ingrowth to the bioceramic-coated three-dimensional fabric surface had been demonstrated already under a stable environment in preliminary animal studies.

View Article and Find Full Text PDF

Study Design: A new artificial intervertebral disc was developed, and its intrinsic biomechanical properties, bioactivity, and the effectiveness as a total disc replacement were evaluated in vitro and in vivo.

Objectives: To introduce a new artificial intervertebral disc and to evaluate the in vitro mechanical properties, fusion capacity to bone, and segmental biomechanics in the total intervertebral disc replacement using a sheep lumbar spine.

Summary Of Background Data: The loss of biologic fusion at the bone-implant interface and prosthetic failures have been reported in previous artificial discs.

View Article and Find Full Text PDF

The effect of forged unsintered hydroxyapatite/poly-L-lactide (u-HA/PLLA) composite films on spinal cord and nerve roots and its degradation behavior and osteoconductivity in epidural space were compared with those of calcined HA (c-HA)/PLLA and unfilled PLLA films. Partial laminectomy was performed on 20 rabbits, and u-HA/PLLA and PLLA films were implanted in the intervertebral space. Total laminectomy was performed on 30 rabbits to implant u-HA/PLLA, c-HA/PLLA, and PLLA films in both epidural and subcutaneous spaces.

View Article and Find Full Text PDF