Publications by authors named "Yasuo Okamoto"

Fibrosis is characterized by excessive deposition of extracellular matrix proteins, particularly collagen, caused by myofibroblasts in response to chronic inflammation. Although G protein-coupled receptors (GPCRs) are among the targets of current antifibrotic drugs, no drug has yet been approved to stop fibrosis progression. Herein, we aimed to identify GPCRs with profibrotic effects.

View Article and Find Full Text PDF

Although subtle barrier defects may facilitate allergen penetration, thereby enabling allergic sensitization, the relationship between sweating disturbance and skin barrier function is unknown. However, many studies on contact hypersensitivity in mice examined ear skin, which does not sweat, instead of the footpad, where sweating is uniquely present. In this study, we assessed whether sweat suppression in the footpad before hapten application provoked a skin barrier abnormality and reduced inflammatory thresholds to topical haptens.

View Article and Find Full Text PDF
Article Synopsis
  • Krabbe disease is a genetic condition that leads to the breakdown of myelin due to a deficiency in the enzyme GALC, which affects the metabolism of GalCer and results in the accumulation of psychosine.
  • Researchers created a mouse model (Twi/Sap-D KO) lacking both GALC and saposin-D (Sap-D) to study its effects on disease progression and found that, although these mice showed less psychosine buildup and milder demyelination early on, they still experienced severe demyelination and shorter lifespans in later stages.
  • The study suggests that psychosine accumulation primarily occurs through GalCer deacylation by ACDase, with hints that macrophage activation, independent of psychosine,
View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a lipid mediator, which regulates adipogenic differentiation and glucose homeostasis by suppressing nuclear peroxisome proliferator-activated receptor γ (PPARγ). Glycerophosphodiesterase 7 (GDE7) is a Ca-dependent lysophospholipase D that localizes in the endoplasmic reticulum. Although mouse GDE7 catalyzes cPA production in a cell-free system, it is unknown whether GDE7 generates cPA in living cells.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a lipid mediator that regulates various processes, including cell migration and cancer progression. Autotaxin (ATX) is a lysophospholipase D-type exoenzyme that produces extracellular LPA. In contrast, glycerophosphodiesterase (GDE) family members GDE4 and GDE7 are intracellular lysophospholipases D that form LPA, depending on Mg and Ca, respectively.

View Article and Find Full Text PDF

Previous reports have demonstrated that sphingosine 1-phosphate receptor type 2 (S1P) is involved in the activation of signal transducer and activator of transcription (STAT) 6. Additionally, the major signaling pathway of S1P is the Rho-Rho kinase pathway. In this study, we examined the role of S1P in STAT6 activation in a macrophage (Mφ) model using THP-1 cells differentiated with phorbol 12-myristate 13-acetate (PMA).

View Article and Find Full Text PDF

Objective: Activating transcription factor 4 (ATF4) is a transcriptional regulator of the unfolded protein response and integrated stress response (ISR) that promote the restoration of normal endoplasmic reticulum (ER) function. Previous reports demonstrated that dysregulation of the ISR led to development of severe diabetes. However, the contribution of ATF4 to pancreatic β-cells remains poorly understood.

View Article and Find Full Text PDF

Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Bioactive N-acylethanolamines (NAEs), including palmitoylethanolamide and anandamide, have various health benefits, but their breakdown is managed by enzymes like fatty acid amide hydrolase and NAE acid amidase.
  • This study found that acid ceramidase (AC), an enzyme similar in function to NAAA, can also break down NAEs, particularly lauroylethanolamide.
  • Research showed that increasing AC levels in cells decreased NAEs, while reducing AC through siRNA led to higher NAE levels, indicating AC's significant role as a third enzyme responsible for NAE degradation.
View Article and Find Full Text PDF

Lung fibrosis is a devastating disease characterized by fibroblast accumulation and extracellular matrix deposition in lungs. However, its molecular and cellular pathogenesis is not fully understood and the current therapeutic strategies are ineffective. Bleomycin-induced lung fibrosis is the most widely used experimental model for research aimed at in-depth analysis of lung fibrosis mechanisms.

View Article and Find Full Text PDF

Atherosclerosis is the major cause of ischemic coronary heart diseases and characterized by the infiltration of cholesterol-accumulating macrophages in the vascular wall. Although sphingolipids are implicated in atherosclerosis as both membrane components and lipid mediators, the precise role of sphingolipids in atherosclerosis remains elusive. Here, we found that genetic deficiency of sphingosine kinase-2 (SphK2) but not SphK1 aggravates the formation of atherosclerotic lesions in mice with ApoE deficiency.

View Article and Find Full Text PDF

α-Lipoic acid (ALA) is used as a dietary supplement and known as an anti-oxidant. The present study aimed to examine whether ALA improves endothelial dysfunction in high-fat diet-fed obese mice. After feeding a high-fat diet to Institute of Cancer Research (ICR) mice for 4 weeks, the mice were maintained with a high-fat diet (group HF) or a high-fat diet containing ALA (25 mg/d, group HF + ALA) for an additional 20 weeks.

View Article and Find Full Text PDF

Class II phosphoinositide 3-kinases (PI3Ks), PI3K-C2α and PI3K-C2β, are highly homologous and distinct from class I and class III PI3Ks in catalytic products and domain structures. In contrast to class I and class III PI3Ks, physiological roles of PI3K-C2α and PI3K-C2β are not fully understood. Because we previously demonstrated that PI3K-C2α is involved in vascular smooth muscle contraction, we studied the phenotypes of smooth muscle-specific knockout (KO) mice of PI3K-C2α and PI3K-C2β.

View Article and Find Full Text PDF

The plant contains cannabinoids represented by Δ-tetrahydrocannabinol, which exert psychoactivity and immunomodulation through cannabinoid CB1 and CB2 receptors, respectively, in animal tissues. Arachidonoylethanolamide (also referred to as anandamide) and 2-arachidonoylglycerol (2-AG) are well known as two major endogenous agonists of these receptors (termed "endocannabinoids") and show various cannabimimetic bioactivities. However, only 2-AG is a full agonist for CB1 and CB2 and mediates retrograde signals at the synapse, strongly suggesting that 2-AG is physiologically more important than anandamide.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of the lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice.

View Article and Find Full Text PDF

Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1-S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts.

View Article and Find Full Text PDF

We have recently demonstrated that the PI3K class II-α isoform (PI3K-C2α), which generates phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphates, plays crucial roles in angiogenesis, by analyzing PI3K-C2α knock-out mice. The PI3K-C2α actions are mediated at least in part through its participation in the internalization of VEGF receptor-2 and sphingosine-1-phosphate receptor S1P1 and thereby their signaling on endosomes. TGFβ, which is also an essential angiogenic factor, signals via the serine/threonine kinase receptor complex to induce phosphorylation of Smad2 and Smad3 (Smad2/3).

View Article and Find Full Text PDF

Aims/hypothesis: Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes.

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate receptor 2 (S1P(2)) is expressed in vascular endothelial cells (ECs). However, the role of S1P(2) in vascular barrier integrity and anaphylaxis is not well understood. Endothelial nitric oxide synthase (eNOS) generates nitric oxide to mediate vascular leakage, compromising survival in patients with anaphylaxis.

View Article and Find Full Text PDF

The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3'-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P(1-3).

View Article and Find Full Text PDF

The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly.

View Article and Find Full Text PDF

Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), which acts as both the extracellular and intracellular messenger, exerts pleiotropic biological activities including regulation of formation of the vasculature, vascular barrier integrity, and lymphocyte trafficking. Many of these S1P actions are mediated by five members of the G protein-coupled S1P receptors (S1P(1) -S1P(5) ) with overlapping but distinct coupling to heterotrimeric G proteins. The biological activities of S1P are based largely on the cellular actions of S1P on migration, adhesion, and proliferation.

View Article and Find Full Text PDF

Unlabelled: Sinusoidal vasoconstriction, in which hepatic stellate cells operate as contractile machinery, has been suggested to play a pivotal role in the pathophysiology of portal hypertension. We investigated whether sphingosine 1-phosphate (S1P) stimulates contractility of those cells and enhances portal vein pressure in isolated perfused rat livers with Rho activation by way of S1P receptor 2 (S1P(2) ). Rho and its effector, Rho kinase, reportedly contribute to the pathophysiology of portal hypertension.

View Article and Find Full Text PDF