Publications by authors named "Yasuo Igarashi"

Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.

View Article and Find Full Text PDF

Aims: This study explores the phosphate (Pi)-solubilizing characteristics and mechanisms of a novel phosphate-solubilizing bacterium, Agrobacterium deltaense C1 (C1 hereafter).

Methods And Results: The growth-promoting effects of C1 were investigated by gnotobiotic experiments, and the Pi-solubilizing mechanism was revealed by extracellular metabolomics, liquid chromatography analysis, and reverse transcription quantitative polymerase chain reaction. Results showed that C1 significantly increased Arabidopsis biomass and total phosphorus (P) content under P deficiency.

View Article and Find Full Text PDF

Improving the anaerobic digestion (AD) performance in low-temperature environments has become a key factor in the development of waste treatment and resource recovery in cold regions. The utilization of external carriers to form a biofilm is the simplest and most practical way to enhance the psychrophilic AD performance in cold regions. In this study, the effect of carrier addition on the fermentation performance of low-temperature (15 ± 2 °C) food wastewater was investigated by forming biofilms with carbon brushes.

View Article and Find Full Text PDF

Dichomitus squalens is an efficient white-rot fungus that generates a wide range of extracellular enzymes to degrade lignocellulose in nature. Although a protoplast-mediated transformation method for D. squalens has been developed, the transformation efficiency remains low.

View Article and Find Full Text PDF

Anaerobic digestion (AD) with municipal wastewater contained heavy metal mercury (Hg) highly affects the utilization of activated sludge, and poses severe threat to the health of human beings. However, the biogeochemical transformation of Hg during AD remains unclear. Here, we investigated the biogeochemical transformation and environmental characteristics of Hg and the variations of dominant microbes during AD.

View Article and Find Full Text PDF

Cyanobacterial blooms negatively affect aquatic ecosystems and human health. Algicidal bacteria can efficiently kill bloom-causing cyanobacteria. Bacillus altitudinis G3 isolated from Dianchi Lake shows high algicidal activity against Microcystis aeruginosa.

View Article and Find Full Text PDF

Anaerobic activated sludge is rich in humic substances and water, leading to significant differences in the stability of metagenomic DNA and metatranscriptomic RNA. Thus, it is of great difficulty to exact high-quality and high-yield DNA and RNA from them, especially those cultured at a wide range of temperatures. Here, we established fast and effective DNA and RNA extraction methods based on current commercial kits.

View Article and Find Full Text PDF

Cyanobacterial blooms significantly decrease water quality and can damage ecosystems and, as such, require efficient control methods. Algicidal bacteria and their associated substances are promising tools for controlling cyanobacterial blooms; however, their specific algicidal mechanisms remain unclear. Therefore, the current study sought to investigate the algicidal mechanism of tryptoline (1,2,3,4-tetrahydro-9 h-pyrido[3,4-b]indole) against Microcystis aeruginosa, with a specific focus on the contribution made by reactive oxygen species (ROS), the underlying mechanisms of ROS increase, as well as the photosystem response.

View Article and Find Full Text PDF

In this study, single-chamber and dual-chamber Microbial electrosynthesis (MES) with carbon fiber brushes as electrodes were operated at 15°C to compare and analyze the difference in methanogenic performance. Metatranscriptomic analysis showed that the relative abundance of electroactive microorganisms Syntrophomonas, Pseudomonas and Bacteroides in each group exceeded 90%, while the abundance of Geobacter was less than 4%. Acetoclastic methanogens Methahnosarcina was more enriched in dual-chamber MES (61.

View Article and Find Full Text PDF

The identification of dominant microbes in anaerobic mercury (Hg) methylation, methylmercury (MeHg) demethylation, and methane oxidation as sulfate-reducing bacteria, methanogens or, probably, anaerobic methanotrophic archaea (ANMEs) is of great interest. To date, however, the interrelationship of bacteria and archaea involved in these processes remains unclear. Here, we demonstrated the dynamics of microorganisms participating in these processes.

View Article and Find Full Text PDF

Cyanobacterial blooms are a worldwide problem, especially in freshwaters. As one of the most abundant co-existing organisms of algae, bacteria play critical roles in cyanobacteria growth, particularly the cyanobactericidal bacteria which can efficiently kill cyanobacteria. Recent years, cyanobactericidal bacteria are highly recognized as a method that could potentially block cyanobacterial blooms.

View Article and Find Full Text PDF

PacBio long reads sequencing presents several potential advantages for DNA assembly, including being able to provide more complete gene profiling of metagenomic samples. However, lower single-pass accuracy can make gene discovery and assembly for low-abundance organisms difficult. To evaluate the application and performance of PacBio long reads and Illumina HiSeq short reads in metagenomic analyses, we directly compared various assemblies involving PacBio and Illumina sequencing reads based on two anaerobic digestion microbiome samples from a biogas fermenter.

View Article and Find Full Text PDF

Sclerotium rolfsii (teleomorph Athelia rolfsii) is one of the plant pathogenic basidiomycetes, which causes severe stem-rot disease in hundreds of plants and produces important metabolites, such as scleroglucan and TF-specific lectin. However, further molecular biological research on this filamentous fungus is severely plateaued out due to the lack of genetic methods. In this study, the A.

View Article and Find Full Text PDF

Metal homeostasis is essential cellular progress for cell growth. Metal ion transporters play important roles in the first line of defense to cellular metal homeostasis perturbations. NRAMP transporter family was one of the most important classes in plant cells.

View Article and Find Full Text PDF

Microcystis aeruginosa blooms are a worldwide serious environmental problem and bloom control with bacteria is promising. In this study, a Bacillus licheniformis strain Sp34 with potent algicidal and inhibitory effects on the microcystins synthesis against fast-growing M. aeruginosa was isolated from Dianchi Lake.

View Article and Find Full Text PDF

Background: In the past few decades, microalgae biofuel has become one of the most interesting sources of renewable energy. However, the higher cost of microalgae biofuel compared to that of petroleum prevented microalgae biofuel production. Therefore, the research on increasing lipid productivity from microalgae becomes more important.

View Article and Find Full Text PDF

Mercury (Hg) methylation and demethylation is supposed to simultaneously exist in the environment and form a cycle, which determines the net production of methylmercury (MeHg). Exploring the mechanisms of MeHg formation and degradation, and its final fate in the natural environment is essential to understanding the biogeochemical cycle of Hg. However, MeHg demethylation has been less studied in the past years comparing with Hg methylation, particularly in anaerobic microorganisms whose demethylation role has been under-evaluated.

View Article and Find Full Text PDF

Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction.

View Article and Find Full Text PDF

Mercury (Hg) deposition in the forest ecosystem is a significant source of input for methyl Hg (MeHg) and total Hg (THg) to the subtropical forest field and downstream aquatic systems. Wet deposition, litterfall, runoff, and fluxes with forest soil percolate of MeHg and THg were sampled for two years in a watershed forest of southwest China. Results showed that the depositions of THg and MeHg through litterfall and throughfall were 86 µg m yr and 0.

View Article and Find Full Text PDF

The laccase production by mycelial antagonistic interaction among white-rot fungi is a very important pathway for lignin degradation research. To gain a better understanding of competitive mechanisms under mycelial antagonistic interaction among three lignin-degrading white-rot basidiomycetes of Trametesversicolor (Tv), Pleurotusostreatus (Po) and Dichomitussqualens (Ds), mycelial morphology and proteins in three co-culture combinations TvPo (Tv cocultivated with Po), PoDs (Po cocultivated with Ds), TvDs (Tv cocultivated with Ds) were compared with corresponding each two mono-cultures. In this study, scanning electron microscopy detection of co-cultures indicated a highly close attachment of fungal hyphae with each other and conidiation could be inhibited under fungal interaction.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the dimerization properties of H-NS family proteins TurA and TurB from Pseudomonas putida KT2440 and Pmr from the pCAR1 plasmid.
  • Chemical cross-linking analyses reveal that TurA and TurB show a stronger affinity for forming dimers with each other than with Pmr.
  • Additionally, truncated TurB showed a higher tendency to form oligomers with itself and TurA, further indicating that TurA and TurB interact more robustly than with Pmr.
View Article and Find Full Text PDF

Candida albicans is an opportunistic pathogenic fungus which causes superficial and systemic infections in immunocompromised patients. It is important to characterize the roles of genes involved in its pathogenesis, virulence, and drug resistance. Several genetic manipulation toolkits have been developed for gene function research in C.

View Article and Find Full Text PDF

This study provided analysis of differentially expressed genes (DEGs) in Pleurotus ostreatus under the interaction with Dichomitus squalens and Trametes versicolor, which is valuable for exploration on the fungal defence system against stressful condition caused by interspecific antagonistic interaction. Our result showed significant upregulation of abundant defence-related genes encoding laccase, manganese peroxidase, aldo-keto reductase, and glutathione S-transferase, which all play important roles in oxidative stress-resistant response. Importantly, Lacc2 and Lacc10 were found to be dominantly induced laccase genes in P.

View Article and Find Full Text PDF

For the first decade following its description in 1954, the Calvin-Benson cycle was considered the sole pathway of autotrophic CO assimilation. In the early 1960s, experiments with fermentative bacteria uncovered reactions that challenged this concept. Ferredoxin was found to donate electrons directly for the reductive fixation of CO into alpha-keto acids via reactions considered irreversible.

View Article and Find Full Text PDF

Background: H-NS family proteins are nucleoid-associated proteins that form oligomers on DNA and function as global regulators. They are found in both bacterial chromosomes and plasmids, and were suggested to be candidate effectors of the interaction between them. TurA and TurB are the predominantly expressed H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440, while Pmr is encoded on the carbazole-degradative incompatibility group P-7 plasmid pCAR1.

View Article and Find Full Text PDF