Publications by authors named "Yasuo Ichimori"

The present study was designed to examine the histochemical changes and occurrence of apoptosis in taste buds of rat circumvallate papillae following bilateral transection of the glossopharyngeal nerve. Following transection of the glossopharyngeal nerve, the number of taste buds was not altered until post-operative day 3 (PO3), but decreased significantly thereafter. The number of cells within a taste bud, however, decreased significantly from PO2.

View Article and Find Full Text PDF

The present study employed immunohistochemistry for single-stranded DNA (ssDNA) to detect apoptotic cells in taste buds of the rat circumvallate papilla. Double-labeling of ssDNA and markers for each cell type - phospholipase C beta2 (PLCbeta2) and alpha-gustducin for type II cells, neural cell adhesion molecule (NCAM) for type III cells, and Jacalin for type IV cells - was also performed to reveal which types of cells die by apoptosis. We detected approximately 16.

View Article and Find Full Text PDF

Double immunohistochemistry of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins [synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin and vesicle-associated protein-2 (VAMP-2)], and specific cell markers of taste buds cells [alpha-gustducin and phospholipase Cbeta2 (PLCbeta2) for type II cells; neural cell adhesion molecule (NCAM) for type III cells] was applied to gustatory epithelia of the rat circumvallate papillae. All three SNARE proteins were present in some elongated taste buds cells as well as intra-, peri- and subgemmal nerve fibers. Double immunohisotochemistry revealed that nearly all alpha-gustducin and PLCbeta2 immunoreactive cells expressed SNAP-25, syntaxin, and VAMP-2.

View Article and Find Full Text PDF

Mouse, rat and human molars begin to form root after the completion of crown formation. In these teeth, fibroblast growth factor (Fgf) 10 disappears in the transitional stage from crown formation to root. By contrast, rodent incisors and vole molars demonstrate continuous growth, owing to the formation and maintenance of a stem cell compartment by the constant expression of Fgf10.

View Article and Find Full Text PDF

The stratum intermedium develops as flattened cell layers on the proximal side of the ameloblast layer during tooth development. However, little information is available regarding the origin and the role. In this study, we indicate that some stratum intermedium cells originate from the inner enamel epithelium (IEE) in rat incisor organ cultures using DiI as a tracer.

View Article and Find Full Text PDF