Nitriles functionalize amines and ammonia under catalytic hydrogenation conditions.
View Article and Find Full Text PDFChronic exposure to cathinone derivatives increases the risk of severe health hazards, whereas little is known about the detailed pathogenic mechanisms triggered by the derivatives. We have recently shown that treatment with α-pyrrolidinononanophenone (α-PNP, a highly lipophilic cathinone derivative possessing a long hydrocarbon main chain) provokes neuronal cell apoptosis and its 4'-fluorinated analog (F-α-PNP) potently augments the apoptotic effect. In this study, we found that neuronal SK-N-SH cell damage elicited by F-α-PNP treatment is augmented most potently by pre-incubation with an AKR1B1 inhibitor tolrestat, among specific inhibitors of four aldo-keto reductase (AKR) family members (1B1, 1C1, 1C2, and 1C3) expressed in the neuronal cells.
View Article and Find Full Text PDFCatalytic arene reduction was effectively realized by heating in 2-propanol/water in the presence of Pt on carbon (Pt/C) and metallic Fe. 2-Propanol acted as a hydrogen source, obviating the need for flammable (and hence, dangerous and hard-to-handle) hydrogen gas, while metallic Fe acted as an essential co-catalyst to promote reduction. The chemical states of Pt and Fe in the reaction mixture were determined by X-ray absorption near-edge structure analysis, and the obtained results were used to suggest a plausible reaction mechanism, implying that catalytic reduction involved Pt- and Fe-mediated single-electron transfer and the dehydrogenation of 2-propanol.
View Article and Find Full Text PDFThe polyethyleneimine-modified polymers, polystyrene-divinylbenzene-based (TAs) and polymethacrylate-based polymers (TAm), were used as palladium scavengers to eliminate residual palladium species after palladium on carbon-catalyzed Sonogashira-type coupling reaction. Since both TAs and TAm indicated relatively favorable elimination abilities toward residual palladium species in the reaction mixture, the affinities of TAs and TAm for palladium species were used as supports for palladium catalysts. The TAm-supported palladium catalyst (Pd/TAm) indicated better catalyst properties for the chemoselective hydrogenation compared to those of the corresponding TAs-supported palladium catalyst (Pd/TAs).
View Article and Find Full Text PDFMicrowave-assisted continuous-flow reactions have attracted significant interest from synthetic organic chemists, especially process chemists from practical points of view, due to a less complicated shift to large-scale synthesis based on simple and continuous access to products with low energy requirements. In this personal account, we focused on the Suzuki-Miyaura and Mizoroki-Heck reactions, both of which are significantly important cross-coupling reactions for the synthesis of various functional materials. Microwave power is effective for heating.
View Article and Find Full Text PDFHydrogen gas can be generated from simple alkanes (e.g., n-pentane, n-hexane, etc.
View Article and Find Full Text PDFIn the presence of palladium on carbon (Pd/C) as a catalyst, hydrogenation of aliphatic nitriles in cyclohexane efficiently proceeded at 25-60 °C under ordinary hydrogen gas pressure to afford the corresponding tertiary amines. However, the use of rhodium on carbon (Rh/C) led to the highly selective generation of secondary amines. Hydrogenation of aromatic nitriles and cyclohexanecarbonitrile selectively produced secondary amines in the presence of either Pd/C or Rh/C.
View Article and Find Full Text PDFThe palladium on carbon (Pd/C)-catalyzed direct methoxylation of the benzylic positions of linear benzyl and cyclic ether substrates proceeded in the presence of i-Pr NEt under an oxygen atmosphere to give the corresponding mixed acetals. Cyclic acetal derivatives could also be converted into orthoesters. The present direct methoxylation via a carbon-hydrogen (C-H) functionalization can be accomplished using the easily-removed Pd/C and molecular oxygen as a green oxidant.
View Article and Find Full Text PDFCyclic ethers have been effectively synthesized via the intramolecular cyclization of diols using trimethyl phosphate and NaH. The present cyclization could proceed at room temperature to produce 5-7 membered cyclic ethers in good to excellent yields. Substrates possessing a chiral secondary hydroxy group were transformed into the corresponding chiral cyclic ethers along with the retention of their stereochemistries.
View Article and Find Full Text PDFCarbon monoxide (CO) and styrene derivatives that can be both generated by a palladium on carbon (Pd/C)-catalyzed carbon-carbon (C-C) bond cleavage reaction of cinnamaldehyde derivatives were effectively utilized in further palladium-catalyzed C-C bond forming reactions in a direct and practical way. CO derived from simple and affordable CO carriers such as cinnamaldehyde or terephthalaldehyde was efficiently employed in the in situ CO fixation with various aromatic iodides through a palladium-catalyzed carbonylation followed by an inter- or intramolecular coupling reaction with alcohols to afford the corresponding esters or lactones, respectively. Styrene derivatives were also efficient substrates in an in situ Mizoroki-Heck-type cross-coupling reaction with aryl iodides, leading to the effective formation of asymmetric stilbenes.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
February 2017
This paper describes practical and selective hydrogenation methodologies using heterogeneous palladium catalysts. Chemoselectivity develops dependent on the catalyst activity based on the characteristic of the supports, derived from structural components, functional groups, and/or morphologies. We especially focus on our recent development of heterogeneous palladium catalysts supported on chelate resin, ceramic, and spherically shaped activated carbon.
View Article and Find Full Text PDFThe development of an unprecedented chemoselective transformation has contributed to forming a novel synthetic process for target molecules. Chemoselective oxidation of aromatic acetals has been accomplished using a reusable palladium on carbon catalyst under atmospheric oxygen conditions to form ester derivatives with tolerance of aliphatic acetals and ketals.
View Article and Find Full Text PDFThe deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.
View Article and Find Full Text PDFDisiloxanes possessing a silicon-oxygen linkage are important as frameworks for functional materials and coupling partners for Hiyama-type cross coupling. We found that disiloxanes were effectively constructed of hydrosilanes catalyzed by gold on carbon in water as the solvent and oxidant in association with the emission of hydrogen gas at room temperature. The present oxidation could proceed via various reaction pathways, such as the hydration of hydrosilane into silanol, dehydrogenative coupling of hydrosilane into disilane, and the subsequent corresponding reactions to disiloxane.
View Article and Find Full Text PDFWe have demonstrated a palladium on carbon-catalyzed approach to regioselectively alter the cleavage sites of the C-C bonds of cinnamaldehyde derivatives by a slight change in the reaction conditions in isopropanol under an O2 atmosphere. Styrene derivatives could be selectively formed by the addition of Na2CO3 in association with the dissociation of carbon monoxide, while benzaldehyde derivatives were generated by the addition of CuCl and morpholine instead of Na2CO3.
View Article and Find Full Text PDFPlatinum-group metals on activated carbon catalysts, represented by Pd/C, Ru/C, Rh/C, etc., are widely utilized to accomplish green and sustainable organic reactions due to their favorable features, such as easy handling, recoverability, and reusability. The efficient oxidation methods of various organic compounds using heterogeneous platinum-group metals on carbons with or without added oxidants are summarized in this Personal Account.
View Article and Find Full Text PDFA one-pot continuous-flow method for hydrogen (deuterium) generation and subsequent hydrogenation (deuterogenation) was developed using a stainless-steel (SUS304)-mediated ball-milling approach. SUS304, especially zero-valent Cr and Ni as constituents of the SUS304, and mechanochemical processing played crucial roles in the development of the reactions.
View Article and Find Full Text PDFThe benzylic positions of the phthalan and isochroman derivatives (1) as benzene-fused cyclic ethers effectively underwent gold-catalyzed direct azidation using trimethylsilylazide (TMSN3) to give the corresponding 1-azidated products (2) possessing the N,O-acetal partial structure. The azido group of the N,O-acetal behaved as a leaving group in the presence of catalytic iron(III) chloride, and 1-aryl or allyl phthalan and isochroman derivatives were obtained by nucleophilic arylation or allylation, respectively. Meanwhile, a double nucleophilic substitution toward the 1-azidated products (2) occurred at the 1-position using indole derivatives as a nucleophile accompanied by elimination of the azido group and subsequent ring opening of the cyclic ether nucleus produced the bisindolylarylmethane derivatives.
View Article and Find Full Text PDFo- and/or p-naphthoquinone methides (NQMs) can be selectively prepared by the ring opening of 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene derivatives based on a substituent effect at the 4 position of the substrates. The 4-alkyl- or silyl-substituted 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene was transformed to o-NQM (1-naphthoquinone-2-methide), which underwent Friedel-Crafts 1,4-addition of the α,β-unsaturated carbonyl moiety to provide the 2-benzyl-1-naphthol as the biarylmethane and [4 + 2]-cycloaddition with a dienophile to give the fused heterocyclic arene. Meanwhile, the 4-unsubstituted 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene could be converted to the corresponding 4-benzyl-1-naphthol by the Friedel-Crafts 1,6-addition of p-NQM (1-naphthoquinone-4-methide) generated by the site-selective ring opening of the 1,4-epoxy moiety.
View Article and Find Full Text PDFA practical method for the elimination of PCBs from PCB-contaminated soil has been developed by the combination of Soxhlet extraction using a newly-developed modified Soxhlet extractor possessing an outlet valve on the extraction chamber with the chemical degradation. Various types of PCBs contaminated in soils could be completely extracted in refluxing hexane, and the subsequent hydrodechlorination could also be completed within 1 h in a hexane-MeOH (1 : 5) solution in the presence of Pd/C and Et3N under ordinary hydrogen pressure and temperature without the transfer of the extracted PCBs to other reaction container (a complete one-pot procedure). The present system is quite useful as a simple, safe, mild and reliable remediation method of PCB-contaminated soil.
View Article and Find Full Text PDF4-Methoxyphenylmethyl ethers are widely utilized as alcohol protecting groups. FeCl3 effectively catalyzes the deprotection of methoxyphenylmethyl-type ethers in a self-cleaving manner to produce oligomeric derivatives and alcohols. Remarkably, the highly pure mother alcohols can be obtained without silica gel column chromatography by using the 2,4-dimethoxyphenylmethyl group as a protective group.
View Article and Find Full Text PDFBiaryl and heterobiaryl compounds are important frameworks across a range of fields including pharmaceutical and functional material chemistries. We have accomplished the efficient synthesis of various naphthalene-linked arenes and heteroarenes as biaryls and heterobiaryls by the FeCl3 -catalyzed Friedel-Crafts reactions accompanied by the ring-opening of the 1,4-epoxy moiety of 1,4-epoxy-1,4-dihydronaphthalenes. Especially, it is noteworthy that 1-silylated substrates were regioselectively transformed to the 3-aryl-1-silylnaphthalenes and the double Friedel-Crafts reactions using thiophene derivatives could directly produce the corresponding bis-naphthlated thiophene derivatives.
View Article and Find Full Text PDFMethyl and benzyl ethers are widely utilized as protected alcohols due to their chemical stability, such as the low reactivity of the methoxy and benzyloxy groups as leaving groups under nucleophilic conditions. We have established the direct azidation of chemically stable methyl and benzyl ethers derived from secondary and tertiary benzyl alcohols. The present azidation chemoselectively proceeds at the secondary or tertiary benzylic positions of methyl benzyl ethers or unsymmetrical dibenzyl ethers and is also applicable to direct allylation, alkynylation, and cyanation reactions, as well as the azidation.
View Article and Find Full Text PDFFriedel-Crafts benzylations between unactivated arenes and benzyl alcohol derivatives are clean and straightforward processes to construct biologically useful di- and tri-arylmethanes. We have established an efficient iron-catalyzed Friedel-Crafts benzylation method at room temperature that uses benzyl TMS ethers as substrates, which are poorly reactive under common nucleophilic substitution conditions. The reaction seems to progress through iron-catalyzed self-condensation of the benzyl TMS ether to the corresponding dibenzylic ether.
View Article and Find Full Text PDFWe have established the first catalytic C-C and C-N bond formation reactions of O-heterocycles (e.g., tetrahydrofuran, phthalane, and lactone derivatives) using iron trichloride as a catalyst in the presence of TMSN3 or allylsilanes accompanied by the ring opening of O-heterocycles.
View Article and Find Full Text PDF