The patient, a 57-year-old man, observed an elastic hard tumor under his left areola. Ultrasonography showed a circular hypoechoic mass that was 1.5 cm in diameter with a moderately indistinct border.
View Article and Find Full Text PDFAutophagy is known to have a cytoprotective role under various cellular stresses; however, it also results in robust cell death as an important safeguard mechanism that protects the organism against invading pathogens and unwanted cancer cells. Autophagy is regulated by cell signalling including microRNA (miRNA), a post-transcriptional regulator of gene expression. Here, we show that genetically engineered telomerase-specific oncolytic adenovirus induced miR-7 expression, which is significantly associated with its cytopathic activity in human cancer cells.
View Article and Find Full Text PDFOncolytic viruses engineered to replicate in tumour cells but not in normal cells could be used as tumour-specific vectors carrying the therapeutic genes. We previously developed a telomerase-specific oncolytic adenovirus, OBP-301, that causes cell death in human cancer cells with telomerase activities. Here, we further modified OBP-301 to express the wild-type p53 tumour suppressor gene (OBP-702), and investigated whether OBP-702 induces stronger antitumour activity than OBP-301.
View Article and Find Full Text PDFThe inability to repair DNA double-strand breaks (DSB) leads to radiosensitization, such that ionizing radiation combined with molecular inhibition of cellular DSB processing may greatly affect treatment of human cancer. As a variety of viral products interact with the DNA repair machinery, oncolytic virotherapy may improve the therapeutic window of conventional radiotherapy. Here, we describe the mechanistic basis for synergy of irradiation and OBP-301 (Telomelysin), an attenuated type-5 adenovirus with oncolytic potency that contains the human telomerase reverse transcriptase promoter to regulate viral replication.
View Article and Find Full Text PDFMultimodal approaches combining drugs that differentially function is the most popular regimen for treating human cancer. Understanding the molecular mechanisms underlying the synergistic, potentiative, and antagonistic effects of drug combinations could facilitate the discovery of novel efficacious combinations. We previously showed that telomerase-specific replication-competent adenovirus (Telomelysin, OBP-301), in which the human telomerase reverse transcriptase promoter controls the adenoviral E1 gene expression, induces a selective antitumor effect in human cancer cells.
View Article and Find Full Text PDFBackground/objective: The aim of this study was to develop a less invasive way of targeting lymph node metastasis for the treatment of human gastrointestinal cancer. Lymphatic invasion is a major route for cancer cell dissemination, and adequate treatment of locoregional lymph nodes is required for curative treatment in patients with malignancies.
Methods: Human telomerase reverse transcription (hTERT) is the catalytic subunit of telomerase, which is highly active in cancer cells but quiescent in most normal somatic cells.