Aliovalent dopant codoped rutile-TiO materials have garnered attention due to their excellent performance properties, characterized by low loss tangent (tanδ), high dielectric permittivity (ε'), and stable ε' over a broad temperature range. This performance is primarily due to the electron-pinned defect-dipoles (EPDDs) of the complex defects [Formula: see text]Ti-[Formula: see text]TiB. Notably, the excellent dielectric properties in ZrTaTiO (Zr-TTO) ceramics can be achieved using the traditional mixed oxide method without the EPDDs, due to the absence of A (acceptor doping ions).
View Article and Find Full Text PDFIn this study, the rutile TiO system, widely acclaimed for its superior properties, was enhanced through co-doping with isovalent Sn ions and 2.5% Nb donor ions, diverging from traditional acceptor doping practices. This novel doping strategy was implemented by employing a conventional solid-state reaction method, resulting in the synthesis of Sn-doped NbTiO (Sn-NTO) ceramics.
View Article and Find Full Text PDF