Cellular uptake of vitamin B (cobalamin, Cbl) is mediated by a cell surface receptor (TCblR/CD320) that binds transcobalamin (TC) saturated with Cbl. TC is secreted by the vascular endothelium, has a relatively short half-life, binds Cbl with high affinity and presents the vitamin to the receptor for cellular uptake. Here we show binding and internalization of the TC-Cbl complex along with its' receptor (TCblR) in several human cell lines.
View Article and Find Full Text PDFThe prognosis of patients with glioblastoma (GBM) remains dismal, with a median survival of approximately 15 months. Current preclinical GBM models are limited by the lack of a "normal" human microenvironment and the inability of many tumor cell lines to accurately reproduce GBM biology. To address these limitations, we have established a model system whereby we can retro-engineer patient-specific GBMs using patient-derived glioma stem cells (GSCs) and human embryonic stem cell (hESC)-derived cerebral organoids.
View Article and Find Full Text PDFCobalamin uptake into cells is mediated by the 320 receptor for transcobalamin-bound cobalamin. Optimum receptor expression is associated with proliferating cells and therefore, in many cancers this receptor expression is up regulated. Delivering drugs or toxins via this receptor provides increased targeting to cancer cells while minimizing toxicity to the normal tissues.
View Article and Find Full Text PDFThe membrane receptor TCblR/CD320 binds transcobalamin (TC) saturated with vitamin B12 [cobalamin (Cbl)] and mediates cellular uptake of the vitamin. The specificity of TC for Cbl and of the receptor for TC-Cbl ensures efficient uptake of Cbl into cells. The high-affinity interaction of TCblR with TC-Cbl (Ka=10 nM(-1)) was investigated using deletions and mutations of amino acid sequences in TCblR.
View Article and Find Full Text PDFThe membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse.
View Article and Find Full Text PDFThe clinical phenotype of cobalamin (Cbl) deficiency is dictated by the essential role of this vitamin in two key enzymatic reactions. Multiple proteins and receptors participate in the absorption, transport and delivery of this vitamin to tissue cells. Cellular uptake of Cbl is mediated by transcobalamin (TC), a plasma protein and a transmembrane receptor (TCblR) with high affinity for TC saturated with Cbl.
View Article and Find Full Text PDFCellular uptake of cobalamin (Cbl) occurs by endocytosis of transcobalamin saturated with Cbl by the transcobalamin receptor (TCblR/CD320). The cell cycle-associated overexpression of this receptor in many cancer cells provides a suitable target for delivering chemotherapeutic drugs and cytotoxic molecules to these cells while minimizing the effect on the normal cell population. We have used monoclonal antibodies to the extracellular domain of TCblR to deliver saporin-conjugated secondary antibody to various cell lines propagating in culture.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) were generated to the extracellular domain of transcobalamin receptor (TCblR) and used to identify the regions of the receptor protein involved in antibody binding. Based on the effect of transcobalamin bound cobalamin (TC-Cbl) on antibody binding, this study identified both blocking and binding antibodies. Both types of antibodies bind apo as well as holo receptors, whereas the blocking antibody when bound to the apo receptor prevents the binding and cellular uptake of TC-Cbl.
View Article and Find Full Text PDFCellular uptake of cobalamin (Cbl) is mediated by the transcobalamin receptor (TCblR) that binds and internalizes transcobalamin (TC) saturated with Cbl. These receptors are expressed in actively proliferating cells and are down-regulated in quiescent cells. The 5' region of TCblR gene was analyzed for promoter activity to determine transcriptional regulation of TCblR expression.
View Article and Find Full Text PDFElevated methylmalonic acid in five asymptomatic newborns whose fibroblasts showed decreased uptake of transcobalamin-bound cobalamin (holo-TC), suggested a defect in the cellular uptake of cobalamin. Analysis of TCblR/CD320, the gene for the receptor for cellular uptake of holo-TC, identified a homozygous single codon deletion, c.262_264GAG (p.
View Article and Find Full Text PDFThe transcobalamin (TC, TCII) receptor (TCblR) on the plasma membrane binds TC- cobalamin (Cbl) and internalizes the complex by endocytosis. This receptor was purified from human placental membranes by affinity chromatography. Tryptic digest of the protein extracted from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel and subjected to liquid chromatography/mass spectrometry identified 4 peptides that matched with a membrane protein in the data bank.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2005
Cellular uptake of vitamin B(12) (cobalamin, Cbl) is mediated by a receptor expressed on the plasma membrane that binds transcobalamin (TC) saturated with Cbl and internalizes the TC-Cbl by endocytosis. A few reports have described the characterization of the receptor protein. However, many discrepancies have emerged in the functional and structural properties of the receptor and therefore, the identity and primary structure of this protein remains unconfirmed.
View Article and Find Full Text PDF