Publications by authors named "Yasuko Watanabe"

Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl.

View Article and Find Full Text PDF
Article Synopsis
  • Cytokinin is vital for plant stress responses, particularly in drought conditions, and involves a signaling pathway with histidine phosphotransfer proteins (HPs).
  • The study reveals that AHP4 is essential for drought resistance in Arabidopsis thaliana, showing that AHP4 knockout plants have higher survival rates and better physiological adaptations compared to wild-type plants during drought stress.
  • The research identifies that AHP4 influences the expression of genes linked to drought response and enhances traits like increased wax accumulation, leaf cuticle thickness, and oxidative stress management, underscoring its key role in plant drought adaptation.
View Article and Find Full Text PDF

Nitrate (NO ) and phosphate (Pi) deficiencies are the major constraints for chickpea productivity, significantly impacting global food security. However, excessive fertilization is expensive and can also lead to environmental pollution. Therefore, there is an urgent need to develop chickpea cultivars that are able to grow on soils deficient in both NO and Pi.

View Article and Find Full Text PDF

The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants.

View Article and Find Full Text PDF

To examine the potential role of acetate in conferring cadmium (Cd) stress tolerance in lentil (Lens culinaris), several phenotypical and physio-biochemical properties have been examined in Cd-stressed lentil seedlings following acetate applications. Acetate treatment inhibited the translocation of Cd from roots to shoots, which resulted in a minimal reduction in photosynthetic pigment contents. Additionally, acetate-treated lentil showed higher shoot (1.

View Article and Find Full Text PDF

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants.

View Article and Find Full Text PDF

Metalloid contamination, such as arsenic poisoning, poses a significant environmental problem, reducing plant productivity and putting human health at risk. Phytohormones are known to regulate arsenic stress; however, the function of strigolactones (SLs) in arsenic stress tolerance in rice is rarely investigated. Here, we investigated shoot responses of wild-type (WT) and SL-deficient and rice mutants under arsenate stress to elucidate SLs' roles in rice adaptation to arsenic.

View Article and Find Full Text PDF

Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. and type-B triple mutants are almost completely defective in CK signaling, and the mutant was reported to be salt tolerant. Here, we demonstrate that the mutant is also more tolerant to salt stress than wild-type (WT) plants.

View Article and Find Full Text PDF

Background: To clarify the status of admission to facilities for food allergy (FA) children.

Methods: Guardians of FA children who underwent oral food challenges at Sagamihara National Hospital from September to December 2018 were enrolled. We surveyed the experience of refusal to enter facilities, the reason for refusal and so on using a self-administered questionnaire.

View Article and Find Full Text PDF

We explored genetic evidence for strigolactones' role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (NaAsO) revealed differential growth inhibition [WT (11.28%) vs.

View Article and Find Full Text PDF

Drought is an environmental stressor that affects crop yield worldwide. Understanding plant physiological responses to stress conditions is needed to secure food in future climate conditions. In this study, we applied a combination of plant physiology and metabolomic techniques to understand plant responses to progressive water deficit focusing on the root system.

View Article and Find Full Text PDF

The negative effects of phosphate (Pi) and/or nitrate (NO ) fertilizers on the environment have raised an urgent need to develop crop varieties with higher Pi and/or nitrogen use efficiencies for cultivation in low-fertility soils. Achieving this goal depends upon research that focuses on the identification of genes involved in plant responses to Pi and/or NO starvation. Although plant responses to individual deficiency in either Pi (-Pi/+NO ) or NO (+Pi/-NO ) have been separately studied, our understanding of plant responses to combined Pi and NO deficiency (-Pi/-NO ) is still very limited.

View Article and Find Full Text PDF

Strigolactone and karrikin receptors, DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), respectively, have been shown to positively regulate drought resistance in by modulating abscisic acid responsiveness, anthocyanin accumulation, stomatal closure, cell membrane integrity and cuticle formation. Here, we aim to identify genes specifically or commonly regulated by D14 and KAI2 under water scarcity, using comparative analysis of the transcriptome data of the and mutants under dehydration conditions. In comparison with wild-type, under dehydration conditions, the expression levels of genes related to photosynthesis and the metabolism of glucosinolates and trehalose were significantly changed in both and mutant plants, whereas the transcript levels of genes related to the metabolism of cytokinins and brassinosteroids were significantly altered in the mutant plants only.

View Article and Find Full Text PDF

Previous investigations have shown that the SUPPRESSORS OF MAX2 1-LIKE6, 7 and 8 (SMXL6, 7 and 8) proteins redundantly repress strigolactone (SL) signaling in plant growth and development. Recently, a growing body of evidence indicated that SLs positively regulate plant drought resistance through functional analyses of genes involved in SL biosynthesis and positive regulation of SL signaling. However, the functions of the SL-signaling negative regulators SMXL6, 7 and 8 in drought resistance and the associated mechanisms remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that strigolactones improve drought resistance, but the role of the receptor DWARF14 (D14) in this process is not fully understood.
  • In Arabidopsis thaliana, d14 mutants exhibited increased drought sensitivity, marked by larger stomatal openings, slower stomatal closure, and changes in key biochemical traits compared to wild-type plants.
  • The study highlights that while D14 and its paralog KAI2 both influence stomatal function, KAI2 plays a more significant role in overall drought resistance, with D14 having a specific impact on anthocyanin production and a complex interaction with abscisic acid signaling pathways.
View Article and Find Full Text PDF

The effects of changes in various lifestyle habits on nonalcoholic fatty liver disease (NAFLD) have not been well elucidated. We aimed to clarify how weight change and lifestyle modifications were associated with the development or remission of NAFLD. In this longitudinal cohort study, we reviewed the periodic health checkup data of 1,421 subjects with no causes of liver disease besides NAFLD who had received at least two health checkups between 2009 and 2018.

View Article and Find Full Text PDF

Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 ( Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean () in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated.

View Article and Find Full Text PDF

Gradual contamination of agricultural land with copper (Cu), due to the indiscriminate uses of fungicides and pesticides, and the discharge of industrial waste to the environment, poses a high threat for soil degradation and consequently food crop production. In this study, we combined morphological, physiological and biochemical assays to investigate the mechanisms underlying acetate-mediated Cu toxicity tolerance in lentil. Results demonstrated that high dose of Cu (3.

View Article and Find Full Text PDF

The NAC (NAM, ATAF1/2, CUC2) transcription factors are widely known for their various functions in plant development and stress tolerance. Previous studies have demonstrated that genetic engineering can be applied to enhance drought tolerance via overexpression/ectopic expression of genes. In the present study, the dehydration- and drought-inducible from was ectopically expressed in (EX) plants to study its biological functions in mediating plant adaptation to water deficit conditions.

View Article and Find Full Text PDF

The main objective of the present study was to characterize the symbiotic N fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes.

View Article and Find Full Text PDF

Cytokinin (CK) signaling has been shown to play important roles in callus formation and various developmental processes by analyzing different CK-responsive mutants, including the ahk2 ahk3 (AHK, Arabidopsis histidine kinase) double mutant. Recently, an F-box protein, called MAX2 (more axillary growth 2) was identified as a key component regulating many growth and developmental processes through the strigolactone and/or karrikin pathways. However, the function of MAX2 signaling in callus formation, seed size and yield, as well as the effects of its crosstalk with CK signaling on plant growth and development remain elusive.

View Article and Find Full Text PDF

In plants, the Nuclear Factor-Y (NF-Y) transcription factors (TFs), which include three distinct types of NF-YA, NF-YB, and NF-YC TFs, have been identified to play key roles in the regulation of various plant growth and developmental processes under both normal and environmental stress conditions. In this work, a total of 40 CaNF-Y-encoding genes, including eight s, 21 s, and 11 s, were identified in chickpea, and their major gene and protein characteristics were subsequently obtained using various web-based tools. Of our interest, a phylogenetically-based analysis predicted 18 CaNF-Ys (eight CaNF-YAs, seven CaNF-YBs, and three CaNF-YCs) that potentially play roles in chickpea responses to dehydration according to their close relationship with the well-characterized GmNF-Ys in soybean.

View Article and Find Full Text PDF

Ethylene is involved in regulation of various aspects of plant growth and development. Physiological and genetic analyses have indicated the existence of crosstalk between ethylene and other phytohormones, including auxin, cytokinin (CK), abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), jasmonic acid (JA), brassinosteroid (BR) and strigolactone (SL) in regulation of different developmental processes. However, the effects of ethylene on the biosynthesis and contents of these hormones are not fully understood.

View Article and Find Full Text PDF

Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions.

View Article and Find Full Text PDF

Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which enable nodules to respond to low-Pi availability.

View Article and Find Full Text PDF