Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies.
View Article and Find Full Text PDFA 57-year-old man whose mother had been pathologically diagnosed with Alexander disease (ALXDRD), presented with cerebellar ataxia, pyramidal signs, and mild dysarthria. Brain magnetic resonance imaging revealed typical ALXDRD alterations, such as atrophy of the medulla oblongata (MO) and cervical spinal cord, a reduced sagittal diameter of the MO, and garland-like hyperintensity signals along the lateral ventricular walls. A genetic analysis of GFAP by Sanger sequencing revealed a single heterozygous mutation of Glu to Lys at codon 332 (c.
View Article and Find Full Text PDFSpinocerebellar ataxia (SCA) type 17-digenic TBP/STUB1 disease (SCA17-DI) has been recently segregated from SCA17, caused by digenic inheritance of two gene mutations - intermediate polyglutamine-encoding CAG/CAA repeat expansions (polyQ) in TBP (TBP) and STUB1 heterozygosity - the former being associated with SCA17, and the latter with SCA48 and SCAR16 (autosomal recessive). In SCA17, most patients carry intermediate TBP alleles but show incomplete penetrance, and the missing heritability can be explained by a new entity whereby TBP requires the STUB1 variant to be symptomatic. The STUB1 gene encodes the chaperone-associated E3 ubiquitin ligase (CHIP) involved in ubiquitin-mediated proteasomal control of protein homeostasis.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurodegenerative disorders. The cardinal neuropathological features of PD include selective and progressive loss of pigmented neurons in the substantia nigra, deficiencies in dopaminergic signaling in the striatum, and occurrence of phosphorylated α-synuclein-identified Lewy bodies in the nervous system. Parkinsonism, the clinical presentation of movement disorders seen in PD, is a feature shared commonly by other pathologically distinct neurodegenerative diseases, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and multiple system atrophy (MSA).
View Article and Find Full Text PDFBackground: Mutations in PRKN are the most common cause of autosomal recessive juvenile parkinsonism. The objective of this study was to investigate the association between genotype and pathology in patients with PRKN mutations.
Methods: We performed a sequence and copy number variation analysis of PRKN, mRNA transcripts, Parkin protein expression, and neuropathology in 8 autopsied patients.
Progressive supranuclear palsy (PSP) presents with a wide variety of signs/symptoms, making early initial diagnosis difficult. We investigated the clinical and neuropathological features of five patients with autopsy-proven PSP of short duration, ranging from 11 to 41 months (average, 26.2 months) due to unexpected death, focusing particularly on the distribution and severity of neuronal loss as well as neuronal and glial tau pathology in the affected brain.
View Article and Find Full Text PDFPrimary intracranial malignant epidermoids are rare, with most cases developing from a pre-existing benign epidermoid cyst. We report a case involving a rare autopsy finding of a primary intracranial malignant epidermoid in the brainstem with cerebellopontine angle (CPA) involvement. A 53-year-old woman with double vision was diagnosed with right abducens palsy.
View Article and Find Full Text PDFVanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM.
View Article and Find Full Text PDFPurpose: The typical MRI findings in corticobasal degeneration (CBD), which have been described in previous reports, may be non-specific. We evaluated cerebral gyri (CG) using quantitative susceptibility mapping (QSM) images of patients with CBD, progressive supranuclear palsy (PSP), and Parkinson's disease (PD) to determine the possibility of discriminating them on an individual basis.
Methods: After reviewing the normal appearances on QSM on 16 healthy subjects, two radiologists assessed abnormal findings from 12 CBD, 14 PSP, and 30 PD patients.
Enrollment in graduate schools presents a useful opportunity for registered nurses to enhance their expertise in their nursing field and gain better opportunities to achieve their desired career advancements. This study investigates the predictors associated with registered nurses' interest in enrolling in master's programs of nursing graduate schools. For the predictors associated with interest in enrolling in master's programs of nursing science, we evaluated items related to registered nurses' perceptions of their work environments and their impressions regarding master's programs in nursing.
View Article and Find Full Text PDFGlobular glial tauopathies (GGTs) are four-repeat tauopathies characterized by the presence of two types of tau-positive globular glial inclusions (GGIs): globular oligodendrocytic and astrocytic inclusions (GOIs and GAIs). GGTs are classified into three different neuropathological subtypes: Types I, II and III. We report two patients with GGTs - a 76-year-old woman and a 70-year-old man - in whom the disease duration was 5 and 6 years, respectively.
View Article and Find Full Text PDFRetinal vasculopathy with cerebral leukodystrophy (RVCL) is an autosomal-dominant disorder involving the cerebral, retinal, renal, and other systemic microvessels due to frameshift mutations in the TREX1 gene. Under physiological conditions, the TREX1 protein is localized in the cellular cytoplasm and perinuclear area, but translocates into the nucleus in response to oxidative DNA damage. It has been speculated that aberrant localization of the protein may be associated with systemic microangiopathy in patients with RVCL.
View Article and Find Full Text PDFCerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary cerebral small vessel disease (CSVD) caused by homozygous or compound heterozygous mutations of the high temperature requirement A serine peptidase 1 gene (HTRA1). Affected patients suffer from cognitive impairment, recurrent strokes, lumbago and alopecia. Recently, clinical studies have indicated that some patients with heterozygous mutations in HTRA1 may also suffer CSVD.
View Article and Find Full Text PDFEpilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12.
View Article and Find Full Text PDFIn 1999, a polyglutamine expansion was identified in the transcription factor TATA-binding protein (TBP) in a patient with ataxia with negative family history. Subsequently, CAG/CAA repeat expansions in the TBP gene were identified in families with spinocerebellar ataxia (SCA), establishing this repeat expansion as the underlying mutation in SCA type 17 (SCA17). There are several characteristic differences between SCA17 and other polyglutamine diseases.
View Article and Find Full Text PDF