Publications by authors named "Yasuko Natsume"

Tumor tissues consist of heterogeneous cells that originate from stem cells; however, their cell fate determination program remains incompletely understood. Using patient-derived organoids established from patients with advanced colorectal cancer (CRC), we evaluated the potential of olfactomedin 4 (OLFM4) stem cells to produce a bifurcated lineage of progenies with absorptive and secretory properties. In the early phases of organoid reconstruction, OLFM4 cells preferentially gave rise to secretory cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a heterogenous disease, and patients have differences in therapeutic response. However, the mechanisms underlying interpatient heterogeneity in the response to chemotherapeutic agents remain to be elucidated, and molecular tumor characteristics are required to select patients for specific therapies. Patient-derived organoids (PDOs) established from CRCs recapitulate various biological characteristics of tumor tissues, including cellular heterogeneity and the response to chemotherapy.

View Article and Find Full Text PDF

Patient-derived organoids (PDOs) recapitulate the cellular heterogeneity of the original colorectal tumor tissue. Here, we describe a protocol to generate genetically modified PDOs to investigate cancer stem cells. This protocol uses the CRISPR-Cas9 system to knock-in the IRES-EGFP-P2A-iCaspase9 cassette into the 3' UTR of the potential cancer stem cell marker gene, which allows us to investigate their potential for self-replication and pluripotency.

View Article and Find Full Text PDF

Metastasis is the major cause of cancer-related death, but whether metastatic lesions exhibit the same cellular composition as primary tumors has yet to be elucidated. To investigate the cellular heterogeneity of metastatic colorectal cancer (CRC), we established 72 patient-derived organoids (PDOs) from 21 patients. Combined bulk transcriptomic and single-cell RNA-sequencing analysis revealed decreased gene expression of markers for differentiated cells in PDOs derived from metastatic lesions.

View Article and Find Full Text PDF

RAS signaling is a promising target for colorectal cancer (CRC) therapy, and a variety of selective inhibitors have been developed. However, their use has often failed to demonstrate a significant benefit in CRC patients. Here, we used patient-derived organoids (PDOs) derived from a familial adenomatous polyposis (FAP) patient to analyze the response to chemotherapeutic agents targeting EGFR, BRAF and MEK.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is caused by genetic alterations, and comprehensive sequence analyses have revealed the mutation landscapes. In addition to somatic changes, genetic variations are considered important factors contributing to tumor development; however, our knowledge on this subject is limited. Familial adenomatous polyposis coli (FAP) is an autosomal-dominant inherited disease caused by germline mutations in the adenomatous polyposis coli (APC) gene.

View Article and Find Full Text PDF

Transforming acidic coiled-coil-containing (TACC) family members regulate mitotic spindles and have essential roles in embryogenesis. However, the functions of TACC3 in mitosis during mammalian development are not known. We have generated and characterized three mutant alleles of mouse Tacc3 including a conditional allele.

View Article and Find Full Text PDF

A seven-transmembrane protein, frizzled, has been implicated in a planar cell polarity (PCP) pathway as well as the canonical Wnt signaling pathway. Although both pathways require a cytoplasmic protein, dishevelled, the molecular mechanism by which frizzled regulates intracellular signaling remains to be elucidated. In the mouse, nine frizzled family members have been identified and six of them contain a PDZ-binding motif at their carboxyl-termini.

View Article and Find Full Text PDF

The acrosome is a unique organelle that plays an important role at the site of sperm-zona pellucida binding during the fertilization process, and is lost in globozoospermia, an inherited infertility syndrome in humans. Although the acrosome is known to be derived from the Golgi apparatus, molecular mechanisms underlying acrosome formation are largely unknown. Here we show that Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), a recently identified Golgi-associated protein, is predominantly localized at the trans-Golgi region in round spermatids, and male mice in which GOPC has been disrupted are infertile with globozoospermia.

View Article and Find Full Text PDF