Publications by authors named "Yasujiro Hirose"

This study aimed to develop and test a simultaneous acquisition and analysis pipeline for voxel-based magnetic susceptibility and morphometry (VBMSM) on a single dataset using young volunteers, elderly healthy volunteers, and an Alzheimer's disease (AD) group. 3D T -weighted and multi-echo phase images for VBM and quantitative susceptibility mapping (QSM) were simultaneously acquired using a magnetization-prepared spoiled turbo multiple gradient echo sequence with inversion pulse for QSM (MP-QSM). The magnitude image was split into gray matter (GM) and white matter (WM) and was spatially normalized.

View Article and Find Full Text PDF

To mitigate the susceptibility inhomogeneity induced by radio-frequency transmit phase error through the whole brain in quantitative susceptibility mapping (QSM) using single-echo gradient echo sequence, we developed a novel single-step QSM reconstruction algorithm and compared it with a previous algorithm in five healthy volunteers. The proposed algorithm had effectively suppressed the susceptibility inhomogeneity through the whole brain and achieved acceptable quality, similar to that of the susceptibility map calculated from a multi-echo gradient echo sequence.

View Article and Find Full Text PDF

MR-only simulations provide pseudo-CT images which are segmented into 5 kinds of tissues from DIXON-based images. However, it is difficult to register pseudo-CT images to cone-beam CT (CBCT) images collected for image-guided radiation therapy (IGRT), because of the lack of contrasts among tissues. We validated gaps of IGRT between pseudo-CT or planning CT and CBCT for patients without implanted markers.

View Article and Find Full Text PDF

Purpose: We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments.

Materials And Methods: Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization.

View Article and Find Full Text PDF

Purpose: To evaluate the accuracy of susceptibility estimated from the principles of echo shifting with a train of observations (PRESTO) sequence using a 1.5T MRI system, we conducted experiments on the human brain using the PRESTO sequence and compared our results with the susceptibility obtained from spoiled gradient-recalled echo (GRE) sequence with flow compensation using quantitative susceptibility mapping (QSM) reconstruction.

Materials And Methods: Experiments on the human brain were conducted on 12 healthy volunteers (27±4years) using PRESTO and spoiled GRE sequences on a 1.

View Article and Find Full Text PDF

An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes.

View Article and Find Full Text PDF

In small-field irradiation, the back-scattered radiation (BSR) affects the counts measured with a beam monitor chamber (BMC). In general, the effect of the BSR depends on the opened-jaw size. The effect is significantly large in small-field irradiation.

View Article and Find Full Text PDF