Publications by authors named "Yasuji Koyama"

Conidiation is an important reproductive process in Aspergillus. We previously reported, in A. nidulans, that the deletion of a putative glycosyltransferase gene, rseA/cpsA, causes an increase in the production of extracellular hydrolases and a severe reduction in conidiation.

View Article and Find Full Text PDF

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins.

View Article and Find Full Text PDF

Koji molds, such as Aspergillus oryzae and Aspergillus sojae, are used in the food industry in East Asia and have been explored for the large-scale production of extracellular hydrolases. We previously found that the deletion of a gene encoding a putative GT2 glycosyltransferase increased production of extracellular hydrolases in A. sojae.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus oryzae has 27 potential polyketide synthase (PKS) gene clusters, but most of their secondary metabolites remain unidentified.
  • Researchers focused on eight gene clusters identified as being highly expressed and discovered that certain metabolites, specifically 2,4'-dihydroxy-3'-methoxypropiophenone and its precursor, were produced in a specific growth medium.
  • Key enzymes, including PpsB and PpsA, were determined to be critical for the biosynthesis of these metabolites, while another enzyme, PpsC, is proposed to help convert the precursor to the final product, enhancing our understanding of A. oryzae's metabolic capabilities.
View Article and Find Full Text PDF

Free dihomo-γ-linolenic acid (DGLA), a polyunsaturated free fatty acid (FFA), is a precursor of the eicosanoid prostaglandin E1 and is expected to be a source material for artificial production. We previously constructed the Aspergillus oryzae mutant strain ARA1 that produced free DGLA from the disruptant of faaA, an acyl-CoA synthetase gene, where FFA productivity increased by 9.2-fold compared with that of the wild-type strain.

View Article and Find Full Text PDF

We recently developed an Aspergillus oryzae strain in which malonyl-coenzyme A (CoA) supply is strengthened by the deletion of snfA and SCAP as an efficient host to produce a plant polyketide, curcumin. Here, we examined the effectiveness of this strain in producing another polyketide, atrochrysone carboxylic acid (ACA), which is synthesized from eight molecules of malonyl-CoA using an iterative type I polyketide synthase, ACA synthase (ACAS), and atrochrysone carboxyl ACP thioesterase (ACTE) in Aspergillus terreus. When ACAS and ACTE were introduced, the A.

View Article and Find Full Text PDF

The filamentous fungus was recently used as a heterologous host for fungal secondary metabolite production. Here, we aimed to produce the plant polyketide curcumin in . Curcumin is synthesized from feruloyl-coenzyme A (CoA) and malonyl-CoA by curcuminoid synthase (CUS).

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus oryzae is a key microorganism in food and bio industries, so understanding its regulatory mechanisms is essential for its safe application.
  • Researchers identified a new gene, kpeA, which is thought to enhance kojic acid production and is linked to key processes in fungal growth, particularly in conidia production.
  • The study found that disrupting kpeA results in longer hyphae, reduced conidia production, and increased kojic acid output, suggesting kpeA plays a vital role in regulating these functions at the transcriptional level.
View Article and Find Full Text PDF

Basic-region helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that are often involved in the control of growth and differentiation. Recently, it was reported that the bHLH transcription factor DevR is involved in both asexual and sexual development in and regulates the conidial melanin production in In this study, we identified and characterized an gene that showed high similarity with of and (Ao). In the Ao-disrupted strain, growth was delayed and the number of conidia was decreased on Czapek-Dox (CD) minimal agar plates, but the conidiation was partially recovered by adding 0.

View Article and Find Full Text PDF

Heptelidic acid (HA), a sesquiterpene lactone, is a known inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recently, we found that HA was produced by RIB40 and acted as the growth inhibitor of the salt-tolerant lactic acid bacteria in soy sauce brewing. Although several decades have passed since the discovery of HA, the genes involved in its biosynthesis and biosynthetic pathway have not yet been fully identified.

View Article and Find Full Text PDF

Background: Translocated chromosomal duplications occur spontaneously in many organisms; segmental duplications of large chromosomal regions are expected to result in phenotypic changes because of gene dosage effects. Therefore, experimentally generated segmental duplications in targeted chromosomal regions can be used to study phenotypic changes and determine the functions of unknown genes in these regions. Previously, we performed tandem duplication of a targeted chromosomal segment in .

View Article and Find Full Text PDF

The paralogous transcription factors AraR and XlnR in Aspergillus regulate genes that are involved in degradation of cellulose and hemicellulose and catabolism of pentose. AraR and XlnR target the same genes for pentose catabolism but target different genes encoding enzymes for polysaccharide degradation. To uncover the relationship between these paralogous transcription factors, we examined their contribution to regulation of the PCP genes and compared their preferred recognition sequences.

View Article and Find Full Text PDF

In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10.

View Article and Find Full Text PDF

The helix-loop-helix (HLH) family of transcriptional factors is a key player in a wide range of developmental processes in organisms from mammals to microbes. We previously identified the bHLH transcription factor SclR in Aspergillus oryzae and found that the loss of SclR function led to significant phenotypic changes, such as rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. The result implied that SclR is potentially important in both traditional fermentative manufacturing and commercial enzyme production in A.

View Article and Find Full Text PDF

The highly halotolerant and allopolyploid yeast is industrially used for the food production in high concentrations of salt, such as brewing soy sauce and miso paste. Here, we report the draft genome sequence of NBRC 1876 isolated from miso paste.

View Article and Find Full Text PDF

Esterified drimane-type sesquiterpene lactones such as astellolides display various biological activities and are widely produced by plants and fungi. Given their low homology to known sesquiterpene cyclases, the genes responsible for their biosynthesis have not been uncovered yet. Here, we identified the astellolide gene cluster from Aspergillus oryzae and discovered a novel sesquiterpene biosynthetic machinery consisting of AstC, AstI, and AstK.

View Article and Find Full Text PDF

Fungal cellulolytic and hemicellulolytic enzymes are promising tools for industrial hydrolysis of cellulosic biomass; however, the regulatory network underlying their production is not well understood. The recent discovery of the transcriptional activators ClrB and McmA in Aspergillus nidulans implied a novel regulatory mechanism driven by their interaction, experimental evidence for which was obtained from transcriptional and DNA-binding analyses in this study. It was found that ClrB was essential for induced expression of all the genes examined in this study, while McmA dependency of their expression was gene-dependent.

View Article and Find Full Text PDF

Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production.

View Article and Find Full Text PDF

Speradine A is a derivative of cyclopiazonic acid (CPA) found in culture of an Aspergillus tamarii isolate. Heterologous expression of a predicted methyltransferase gene, cpaM, in the cpa biosynthesis gene cluster of A. tamarii resulted in the speradine A production in a 2-oxoCPA producing A.

View Article and Find Full Text PDF

The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified.

View Article and Find Full Text PDF

Several key hydrolases in soy sauce fermentation such as proteases, peptidases, and glutaminases are supplied by Aspergillus sojae or Aspergillus oryzae. The genes encoding these hydrolases were successfully expressed in salt-tolerant yeast Zygosaccharomyces rouxii. These transformants are expected to supply extra hydrolases during soy sauce fermentation process.

View Article and Find Full Text PDF

Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly.

View Article and Find Full Text PDF

AsGahB, a peptidoglutaminase-asparaginase acting as the main glutaminase in Aspergillus sojae, was previously purified from the cytoplasm of overexpressing strains. Here, we found that specific proteolytic digestion of AsGahB by extracellular proteases of koji molds is similar to that of AsGahA which exists in proteolytic form under solid-state culture.

View Article and Find Full Text PDF

Heterokaryon formation by hyphal fusion occurs during a sexual/parasexual cycle in filamentous fungi, and therefore, it is biotechnologically important for crossbreeding. In the industrial filamentous fungus Aspergillus oryzae, a parasexual cycle has been reported, and it was recently suggested that sexual reproduction should be possible. However, as A.

View Article and Find Full Text PDF