Publications by authors named "Yasuhisa Fukunaga"

The potent and selective phosphodiesterase 4 inhibitor ASP3258 is a novel therapeutic agent for asthma and chronic obstructive pulmonary disease (COPD). After a single oral administration to rats, ASP3258 is rapidly absorbed with a bioavailability of 106%. In situ absorption data indicated that ASP3258 is mainly absorbed in the small intestine.

View Article and Find Full Text PDF

The potent phosphodiesterase 4 inhibitor ASP3258 contains a carboxylic acid moiety and a naphthyridine ring and is a novel therapeutic agent for asthma and chronic obstructive pulmonary disease. To support the drug development of ASP3258, we developed and validated a simple method for its determination in rat plasma. Following the addition of the analog AS1406604-00 as an internal standard, plasma samples were processed using C18 -bonded solid-phase extraction cartridges under acidic conditions and injected into a high-performance liquid chromatography system with fluorescence detection.

View Article and Find Full Text PDF

Dipeptidyl peptidase (DPP)-IV is involved in the inactivation of glucagon-like peptide-1 (GLP-1), a potent insulinotropic peptide. Thus, DPP-IV inhibitors are expected to become a useful new class of antidiabetic agent. This report describes the pharmacological profile of the novel DPP-IV inhibitor, ASP8497 [(2S,4S)-4-fluoro-1-({[4-methyl-1-(methylsulfonyl)piperidin-4-yl]amino}acetyl)pyrrolidine-2-carbonitrile monofumarate], both in vitro and in vivo.

View Article and Find Full Text PDF

To anticipate drug-drug interactions by nicardipine in vivo, cytochrome P450 (CYP) forms responsible for the metabolism of nicardipine and inhibition of CYP-dependent drug metabolism by nicardipine were investigated. Microsomes of human B-lymphoblastoid cells expressing each human CYP form were used for the metabolism of nicardipine. Inhibitory effects of nicardipine on drug metabolism were studied using human liver microsomes.

View Article and Find Full Text PDF

We developed and validated a reversed-phase high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of YM-64227 [4-cyclohexyl-1-ethyl-7-methylpyrido(2,3-d)pyrimidin-2-(1H)-one], a novel and selective phosphodiesterase type 4 inhibitor, and its fi ve hydroxylated metabolites in dog plasma. The plasma samples were extracted with tert-butyl methyl ether under alkali conditions. The analytes were well separated on a phenyl ethyl column (5 microm, 250 x 4.

View Article and Find Full Text PDF