Increased blood pressure (BP) variability (BPV) is an independent risk factor of cardiovascular events among hypertensive patients. The arterial baroreceptor reflex is a powerful regulator of BP and attenuates BPV via a sympathetic negative feedback control. Conventional baroreceptor activation therapy (cBAT) electrically stimulates the carotid baroreceptors with constant stimulation parameters.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? The impact of pulmonary arterial hypertension on open-loop baroreflex function, which determines how powerfully and rapidly the baroreflex operates to regulate arterial pressure, remains poorly understood. What is the main finding and its importance? The gain of the baroreflex total arc, indicating the baroreflex pressure-stabilizing function, is markedly attenuated in rats with monocrotaline-induced pulmonary arterial hypertension. This is caused by a rightward shift of the baroreflex neural arc and a downward shift of the peripheral arc.
View Article and Find Full Text PDFAlthough low pressure baroreflex (LPB) has been shown to elicit various cardiovascular responses, its impact on sympathetic nerve activity (SNA) and arterial baroreflex (ABR) function has not been fully elucidated. The aim of this study was to clarify how volume loading-induced acute LPB activation impacts on SNA and ABR function in normal rats. In 20 anesthetized Sprague-Dawley rats, we isolated bilateral carotid sinuses, controlled carotid sinus pressure (CSP), and measured central venous pressure (CVP), splanchnic SNA, and arterial pressure (AP).
View Article and Find Full Text PDFAims: Although pulmonary arterial remolding in pulmonary hypertension (PH) changes the mechanical properties of the pulmonary artery, most clinical studies have focused on static mechanical properties (resistance), and dynamic mechanical properties (compliance) have not attracted much attention. As arterial compliance plays a significant role in determining afterload of the right ventricle, we evaluated how PH changes the dynamic mechanical properties of the pulmonary artery using high-resolution, wideband input impedance (Z). We then examined how changes in Z account for arterial remodeling.
View Article and Find Full Text PDFCentral chemoreflex activation induces sympatho-excitation. However, how central chemoreflex interacts with baroreflex function remains unknown. This study aimed to examine the impact of central chemoreflex on the dynamic as well as static baroreflex functions under open-loop conditions.
View Article and Find Full Text PDFBackground: Hypertension is a major cause of heart failure. Excessive sympathoexcitation in patients with heart failure leads to poor prognosis. Since carotid body denervation (CBD) has been shown to reduce sympathetic nerve activity in animal models of hypertension and heart failure, we examined if bilateral CBD attenuates the progression of hypertensive heart failure and improves survival.
View Article and Find Full Text PDFBackground: Although vagal nerve stimulation (VNS) benefits patients with chronic heart failure (CHF), the optimal dose of VNS remains unknown. In clinical trials, adverse symptoms limited up-titration. In this study, we evaluated the impact of various voltages of VNS which were titrated below symptom threshold on cardiac function and CHF parameters in rat myocardial infarction (MI) models.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2016
In heart failure with preserved ejection fraction (HFpEF), the complex pathogenesis hinders development of effective therapies. Since HFpEF and arteriosclerosis share common risk factors, it is conceivable that stiffened arterial wall in HFpEF impairs baroreflex function. Previous investigations have indicated that the baroreflex regulates intravascular stressed volume and arterial resistance in addition to cardiac contractility and heart rate.
View Article and Find Full Text PDFThe heart has two major modalities of hypertrophy in response to hemodynamic loads: concentric and eccentric hypertrophy caused by pressure and volume overload (VO), respectively. However, the molecular mechanism of eccentric hypertrophy remains poorly understood. Here we demonstrate that the Akt-mammalian target of rapamycin (mTOR) axis is a pivotal regulator of eccentric hypertrophy during VO.
View Article and Find Full Text PDF