Publications by authors named "Yasuhiro Nishimoto"

The American Association of Physicists in Medicine (AAPM) Working Group on TG-51 published an Addendum to the AAPM's TG-51 protocol (Addendum to TG-51) in 2014, and the Japan Society of Medical Physics (JSMP) published a new dosimetry protocol JSMP 12 in 2012. In this study, we compared the absorbed dose to water determined at the reference depth for high-energy photon beams following the recommendations given in AAPM TG-51 and the Addendum to TG-51, IAEA TRS-398, and JSMP 12. This study was performed using measurements with flattened photon beams with nominal energies of 6 and 10 MV.

View Article and Find Full Text PDF

The uncertainty of the beam quality conversion factor (k(Q,Q0)) of standard dosimetry of absorbed dose to water in external beam radiotherapy 12 (JSMP12) is determined by combining the uncertainty of each beam quality conversion factor calculated for each type of ionization chamber. However, there is no guarantee that ionization chambers of the same type have the same structure and thickness, so there may be individual variations. We evaluated the uncertainty of k(Q,Q0) for JSMP12 using an ionization chamber dosimeter and linear accelerator without a specific device or technique in consideration of the individual variation of ionization chambers and in clinical radiation field.

View Article and Find Full Text PDF

In standard external beam radiotherapy dosimetry, which is based on absorbed dose by water, the absorbed dose at any calibration depth is calculated using the same beam quality conversion factor, regardless of the presence or absence of a waterproofing sleeve. In this study, we evaluated whether there were differences between absorbed doses at calibration depths calculated using a beam quality conversion factor including a wall correction factor that corresponds to a waterproofing sleeve thickness of 0.3 mm, and without a waterproofing sleeve.

View Article and Find Full Text PDF

A comparison of absorbed doses to water at a calibration depth determined by Japan Society of Medical Physics (JSMP) 12 and 01 was conducted, using a farmer type ionization chamber. The absorbed dose to water calibration factor (ND,W,Q0) and beam quality conversion factor (kQ,Q0) for JSMP 12 were smaller than the absorbed dose to water calibration factor and beam quality conversion factor for JSMP 01. Differences in absorbed doses at a calibration depth were -0.

View Article and Find Full Text PDF

It is known that renal nitric oxide (NO) is an important controller of urinary sodium excretion. A defect in the kidney's NO system could cause salt-sensitive hypertension. Since it has been demonstrated that doxorubicin binds to the reductase domain of endothelial NO synthase (eNOS) and generates superoxide in vitro, we tested our hypothesis that a high-sodium diet would upregulate the expression of eNOS and enhance oxidative stress in the kidney of doxorubicin-treated rats, resulting in a facilitation of hypertension.

View Article and Find Full Text PDF

Background: The inhibition of nitric oxide (NO) exerts injurious effects on the cardiovascular system by several mechanisms, such as the activation of the renin-angiotensin system, oxidative stress, and inflammatory cytokines. We examined whether COX-2, an inducible isoform of cyclooxygenase, is associated with the pathogenesis observed in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats.

Methods: Three groups of 8-week-old male Sprague-Dawley rats were studied (n = 6 in each group): group 1, untreated controls; group 2, treated with L-NAME (1 g/l for 3 weeks, p.

View Article and Find Full Text PDF

Nitroglycerin-mediated vasorelaxation is chiefly attributed to the cyclic guanosine monophosphate (cGMP)-dependent pathway, and partly to the cGMP-independent pathway via calcium-activated K(+) channels (K(Ca)). To investigate whether chronic hypertension alters responses of vascular smooth muscle to vasoactive agonists, we determined nitroglycerin-mediated relaxation of aortic rings from coarctation hypertensive rats. Banding the abdominal aorta above the renal arteries for 4 weeks elevated blood pressure and caused cardiac hypertrophy by 49%.

View Article and Find Full Text PDF

We investigated the expression of endothelial NO synthase (eNOS) in the kidneys of fructose-fed insulin-resistant rats (FFR) with a low- or high-sodium diet. Male Sprague-Dawley rats were fed a control (C) or high-fructose (40% fructose; F) diet, with each coming in low-sodium (0.024% NaCl; LS-C or LS-F) or high-sodium (3% NaCl; HS-C or HS-F) varieties, for 2 weeks.

View Article and Find Full Text PDF

1. Angiotensin-converting enzyme (ACE) inhibitors have been shown to improve insulin-resistance both experimentally and clinically. We therefore investigated the effects of quinapril, which has high tissue specificity for ACE, regarding the contribution of insulin to vascular contractions, as well as insulin sensitivity in a dietary rat model of insulin resistance.

View Article and Find Full Text PDF