Publications by authors named "Yasuhiro Kakazu"

Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity.

View Article and Find Full Text PDF

Background: Images in biomedical imaging research are often affected by non-specific background noise. This poses a serious problem when the noise overlaps with specific signals to be quantified, e.g.

View Article and Find Full Text PDF

Increased activities of cytoplasmic calcium and the excitatory neurotransmitter glutamate have been independently implicated in dystonia pathophysiology. However, cellular-level evidence linking these two features is not available. Here we show that glutamate-dependent changes in neuronal calcium dynamics occur in a knock-in mouse model of DYT1 dystonia, the most common hereditary form of this disorder.

View Article and Find Full Text PDF

The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated.

View Article and Find Full Text PDF

TorsinA is an evolutionarily conserved AAA+ ATPase, and human patients with an in-frame deletion of a single glutamate (ΔE) codon from the encoding gene suffer from autosomal-dominant, early-onset generalized DYT1 dystonia. Although only 30-40% of carriers of the mutation show overt motor symptoms, most experience enhanced excitability of the central nervous system. The cellular mechanism responsible for this change in excitability is not well understood.

View Article and Find Full Text PDF

Early-onset generalized dystonia, DYT1, is caused by a mutation in the gene encoding the evolutionarily conserved AAA+ ATPase torsinA. Synaptic abnormalities have been implicated in DYT1 dystonia, but the details of the synaptic pathophysiology are only partially understood. Here, we demonstrate a novel role for torsinA in synaptic vesicle recycling, using cultured hippocampal neurons from a knock-in mouse model of DYT1 dystonia (ΔE-torsinA) and live-cell imaging with styryl FM dyes.

View Article and Find Full Text PDF

The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. In SAT-I null mice, hearing ability, assessed by brainstem auditory-evoked potentials (BAEP), was impaired at the onset of hearing and had been completely lost by 17 days after birth (P17), showing a deformity in hair cells in the organ of Corti. By 2 months of age, the organ of Corti had selectively and completely disappeared without effect on balance or motor function or in the histology of vestibule.

View Article and Find Full Text PDF

Tetraethylammonium (TEA)-sensitive potassium currents in the cochlear inner hair cells (IHCs) possess the kinetics of fast inactivation. IHCs of guinea-pigs were separately isolated from the apical and basal turns and the tonotopic gradient of inactivation kinetics was investigated. TEA-sensitive potassium currents showed voltage-dependent time constant of the inactivation phase both in apical and basal IHCs, however, the degree of inactivation (compared to the ratio between the steady-state current and initial peak current) was voltage-independent.

View Article and Find Full Text PDF

Objectives: The aim of this study is to investigate the salicylate-induced morphological changes of cochlear inner hair cells (IHCs) and outer hair cells (OHCs).

Methods: IHCs and OHCs were acutely isolated from the guinea-pig cochlea. Cells were observed under the inverted microscope and 10mmol/L sodium salicylate solutions or 0.

View Article and Find Full Text PDF

Bilirubin is a well-known neurotoxin that can result in multiple neurologic deficits. Previous studies have suggested that bilirubin affects aspects of synaptic transmission; however the acute effects of bilirubin on synaptic transmission have not been examined in real-time. In this study, using whole-cell voltage-clamp recordings, we observed the effect of bilirubin on inhibitory postsynaptic currents (IPSC) in postnatal 13-15-day-old neurons dissociated from lateral superior olive nuclei (LSO), one of the brainstem auditory nucleus that are highly vulnerable to bilirubin.

View Article and Find Full Text PDF

This study investigated hearing levels in cases of intractable otitis media with eosinophils and validated the treatment strategy. Medical charts were reviewed retrospectively. The diagnosis was made when the proportion of eosinophils in middle ear secretions exceeded 10%.

View Article and Find Full Text PDF

Objective: Treatment outcomes for squamous cell carcinoma of the temporal bone were evaluated regarding stage, therapeutic strategy, and prognostic factors.

Study Design: Retrospective case review.

Setting: University hospital and outpatient clinic.

View Article and Find Full Text PDF

The physiological and pharmacological properties of gamma-aminobutyric acid (GABA)-induced responses were investigated in acutely isolated spiral ganglion cells (SGCs) of guinea pig by using either a nystatin-perforated patch recording configuration or a conventional whole-cell patch recording mode combined with rapid drug application. GABA and GABA(A) subtype receptor agonist, muscimol, induced inward currents in a concentration-dependent manner in 74% of all cells. The current-voltage relationship for the GABA response indicated the GABA-induced current in SGCs is carried by Cl-.

View Article and Find Full Text PDF

It is generally accepted that, in glottic carcinoma, the voice will deteriorate, even in the early stages. This paper reports the degree of hoarseness and multidimensional vocal evaluation of glottic carcinoma patients. Forty-seven male glottic carcinoma patients and a control group of 13 normal subjects were included in this study involving psychoacoustic evaluation by doctors, acoustic analysis, phonogram, maximum phonation time and stroboscopy before treatment.

View Article and Find Full Text PDF

Background: Automatic continuous positive airway pressure (auto-CPAP) machines differ mainly in algorithms used for respiratory event detection and pressure control. The auto-CPAP machines operated by novel algorithms are expected to have better performance than the earlier ones in the treatment of obstructive sleep apnea syndrome (OSAS).

Objectives: The purpose of this study was to determine the therapeutic characteristics between two different auto-CPAP devices, i.

View Article and Find Full Text PDF

A developmental change in GABA and glycine responses, from a depolarization to a hyperpolarization, have been reported for a range of CNS neurons, and has been demonstrated to be due to a developmental decrease in the intracellular Cl- concentration ([Cl-](i)). We examined [Cl-](i) in isolated rat lateral superior olive (LSO) neurons using patch-clamp recordings of glycine gated Cl- currents and by measuring intracellular Cl- -fluorescence. In neurons from 14-16-day-old rats (P14-P16), which had previously received unilateral or bilateral cochlear ablations before the onset of hearing, there was no developmental decrease in [Cl-](i).

View Article and Find Full Text PDF

Early in postnatal development, inhibitory inputs to rat lateral superior olive (LSO) neurons change from releasing predominantly GABA to releasing predominantly glycine into the synapse. Here we show that spontaneous miniature inhibitory postsynaptic currents (mIPSCs) also change from GABAergic to glycinergic over the first two postnatal weeks. Many 'mixed' mIPSCs, resulting from co-release of glycine and GABA from the same vesicles, are seen during this transition.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs).

View Article and Find Full Text PDF

Rat Meynert neurons were acutely isolated using a dissociation technique that maintains functional GABAergic presynaptic boutons. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded under voltage-clamp conditions using whole cell patch-clamp recordings. Using the frequency of mIPSCs as a measure of presynaptic terminal excitability, the existence of a Na(+)/Ca(2+) exchanger (NCX) in these GABAergic nerve terminals was clearly demonstrated.

View Article and Find Full Text PDF