The DEAD-box family of RNA helicases plays essential roles in both transcriptional and translational mRNA degradation; they unwind short double-stranded RNA by breaking the RNA-RNA interactions. Two DEAD-box RNA helicases, eukaryotic translation initiation factor 4A3 (eIF4A3) and DEAD-box helicase 3 (DDX3X), show high homology in the ATP-binding region and are considered key molecules for cancer progression. Several small molecules that target eIF4A3 and DDX3X have been reported to inhibit cancer cell growth; however, more potent compounds are required for cancer therapeutics, and there is a critical need for high-throughput assays to screen for RNA helicase inhibitors.
View Article and Find Full Text PDFCyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality.
View Article and Find Full Text PDFWe previously identified 2-tert-butyl-4-[(3-methoxypropyl)amino]-N-(2-methylpropyl)-N-[(3S,5R)-5-(morpholin-4-ylcarbonyl)piperidin-3-yl]pyrimidine-5-carboxamide 3 as a potent renin inhibitor. Since 3 showed unacceptably low bioavailability (BA) in rats, structural modification, using SBDD and focused on physicochemical properties was conducted to improve its PK profile while maintaining renin inhibitory activity. Conversion of the amino group attached at the 4-position of pyrimidine to methylene group improved PK profile and decreased renin inhibitory activity.
View Article and Find Full Text PDFProtein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as a candidate oncogene owing to its overexpression in several types of cancer. Selective PRMT4 inhibitors are useful tools for clarifying the molecular events regulated by PRMT4 and for validating PRMT4 as a therapeutic target. Here, we report the discovery of TP-064, a potent, selective, and cell-active chemical probe of human PRMT4 and its co-crystal structure with PRMT4.
View Article and Find Full Text PDFAberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins.
View Article and Find Full Text PDFB-cell lymphoma 6 (BCL6) is the most frequently involved oncogene in diffuse large B-cell lymphomas (DLBCLs). BCL6 shows potent transcriptional repressor activity through interactions with its corepressors, such as BCL6 corepressor (BCOR). The inhibition of the protein-protein interaction (PPI) between BCL6 and its corepressors suppresses the growth of BCL6-dependent DLBCLs, thus making BCL6 an attractive drug target for lymphoma treatment.
View Article and Find Full Text PDFStarting from our previous eIF4A3-selective inhibitor , a novel series of (piperazine-1-carbonyl)pyridin-2(1)-one derivatives was designed, synthesized, and evaluated for identification of orally bioavailable probe molecules. Compounds and showed improved physicochemical and ADMET profiles, while maintaining potent and subtype-selective eIF4A3 inhibitory potency. In accord with their promising PK profiles and results from initial in vivo PD studies, compounds and showed antitumor efficacy with T/C values of 54% and 29%, respectively, without severe body weight loss.
View Article and Find Full Text PDFB-cell lymphoma 6 (BCL6) is a transcriptional repressor that can form complexes with corepressors via protein-protein interactions (PPIs). The complexes of BCL6 and corepressors play an important role in the formation of germinal centers (GCs), and differentiation and proliferation of lymphocytes. Therefore, BCL6-corepressor interaction inhibitors would be drug candidates for managing autoimmune diseases and cancer.
View Article and Find Full Text PDFTargeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR).
View Article and Find Full Text PDFChromosomal translocation occurs in some cancer cells, which results in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate the BCR-ABL protein.
View Article and Find Full Text PDFB-cell lymphoma 6 (BCL6) is a transcriptional factor that expresses in lymphocytes and regulates the differentiation and proliferation of lymphocytes. Therefore, BCL6 is a therapeutic target for autoimmune diseases and cancer treatment. This report presents the discovery of BCL6-corepressor interaction inhibitors by using a biophysics-driven fragment-based approach.
View Article and Find Full Text PDFEukaryotic initiation factor 4A-3 (eIF4A3) is an Asp-Glu-Ala-Asp (DEAD) box-family adenosine triphosphate (ATP)-dependent RNA helicase. Subtypes eIF4A1 and eIF4A2 are required for translation initiation, but eIF4A3 participates in the exon junction complex (EJC) and functions in RNA metabolism including nonsense-mediated RNA decay (NMD). No small molecules for NMD inhibition via selective inhibition of eIF4A3 have been discovered.
View Article and Find Full Text PDFEukaryotic initiation factor 4A3 (eIF4A3), a member of the DEAD-box RNA helicase family, is one of the core components of the exon junction complex (EJC). The EJC is known to be involved in a variety of RNA metabolic processes typified by nonsense-mediated RNA decay (NMD). In order to identify molecular probes to investigate the functions and therapeutic relevance of eIF4A3, a search for selective eIF4A3 inhibitors was conducted.
View Article and Find Full Text PDFEukaryotic initiation factor 4A3 (eIF4A3), an ATP-dependent RNA helicase, is a core component of exon junction complex (EJC). EJC has a variety of roles in RNA metabolism such as translation, surveillance, and localization of spliced RNA. It is worthwhile to identify selective eIF4A3 inhibitors with a view to investigating the functions of eIF4A3 and EJC further to clarify the roles of the ATPase and helicase activities in cells.
View Article and Find Full Text PDFMany diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2017
B cell lymphoma 6 (BCL6) is a transcriptional repressor that interacts with its corepressors BcoR and SMRT. Since this protein-protein interaction (PPI) induces activation and differentiation of B lymphocytes, BCL6 has been an attractive drug target for potential autoimmune disease treatments. Here we report a novel BCL6 inhibitory peptide, F1324 (Ac-LWYTDIRMSWRVP-OH), which we discovered using phage display technology; we also discuss this peptide's structure-activity relationship (SAR).
View Article and Find Full Text PDFA novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3 (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)).
View Article and Find Full Text PDFThe action of the aspartyl protease renin is the rate-limiting initial step of the renin-angiotensin-aldosterone system. Therefore, renin is a particularly promising target for blood pressure as well as onset and progression of cardiovascular and renal diseases. New pyrimidine derivatives 5-14 were designed in an attempt to enhance the renin inhibitory activity of compound 3 identified by our previous fragment-based drug design approach.
View Article and Find Full Text PDFThe aspartic proteinase renin is an attractive target for the treatment of hypertension and cardiovascular/renal disease such as chronic kidney disease and heart failure. We introduced an S1' site binder into the lead compound guided by structure-based drug design (SBDD), and further optimization of physicochemical properties led to the discovery of benzimidazole derivative (1-(4-methoxybutyl)--(2-methylpropyl)--[(3,5)-5-(morpholin-4-yl)carbonylpiperidin-3-yl]-1benzimidazole-2-carboxamide hydrochloride, TAK-272) as a highly potent and orally active renin inhibitor. Compound demonstrated good oral bioavailability (BA) and long-lasting efficacy in rats.
View Article and Find Full Text PDFTherapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor.
View Article and Find Full Text PDFMcl-1 and Bcl-xL are crucial regulators of apoptosis, therefore dual inhibitors of both proteins could serve as promising new anticancer drugs. To design Mcl-1/Bcl-xL dual inhibitors, we performed structure-guided analyses of the corresponding selective Mcl-1 and Bcl-xL inhibitors. A cocrystal structure of a pyrazolo[1,5-a]pyridine derivative with Mcl-1 protein was successfully determined and revealed the protein-ligand binding mode.
View Article and Find Full Text PDFThe anticoagulant and antithrombotic profiles of TAK-442, a direct factor Xa (FXa) inhibitor, were investigated. TAK-442 showed potent inhibition of human FXa (Ki = 1.8 nM) and high specificity, with a 440-fold greater selectivity than thrombin and negligible effects on trypsin, plasmin, and tissue plasminogen activator (K(i) > 30 microM).
View Article and Find Full Text PDFCoagulation enzyme factor Xa (FXa) is a particularly promising target for the development of new anticoagulant agents. We previously reported the imidazo[1,5-c]imidazol-3-one derivative 1 as a potent and orally active FXa inhibitor. However, it was found that 1 predominantly undergoes hydrolysis upon incubation with human liver microsomes, and the human specific metabolic pathway made it difficult to predict the human pharmacokinetics.
View Article and Find Full Text PDFThe coagulation enzyme factor Xa (FXa) has been recognized as a promising target for the development of new antithrombotic agents. We previously found compound 1 to be an orally bioavailable FXa inhibitor in fasted monkeys; however, 1 showed poor bioavailability in rats and fed monkeys. To work out the pharmacokinetic problems, we focused our synthetic efforts on the chemical conversion of the 4-(imidazo[1,2- a]pyridin-5-yl)piperazine moiety of 1 to imidazolylpiperidine derivatives (fused and nonfused), which resulted in the discovery of the weakly basic imidazo[1,5- c]imidazol-3-one 3q as a potent and selective FXa inhibitor.
View Article and Find Full Text PDFWe have recently reported the discovery of orally active sulfonylalkylamide Factor Xa (FXa) inhibitors, as typified by compound 1 (FXa IC(50)=0.061 microM). Since the pyridylpiperidine moiety was not investigated in our previous study, we conducted detailed structure-activity relationship studies on this S4 binding element.
View Article and Find Full Text PDF