Publications by authors named "Yasuhiro Akemoto"

Shirasu balloon (SB) is a hollow glassy sphere produced from volcanic deposits by heating that can float up on water owing to its hollow structure. In this study, a novel adsorbent for the removal of cesium ion in water was developed by the modification of the surface of the SBs with magnetite (Mag) and Prussian blue (PB). The developed adsorbent (PB-Mag-SB) was characterized by elemental analysis, X-ray diffraction, and Fourier transform infrared spectrometry and the magnetism of the adsorbent.

View Article and Find Full Text PDF

Cesium (Cs) is known to have a strong interaction with various clay minerals; however, it is not interpreted from the structure of clay minerals and the adsorption isotherm. The adsorption interactions between Cs and hydrobiotite (H-Bio), biotite (Bio), vermiculite (Verm), and exfoliated vermiculite (E-Verm) were evaluated by analyzing adsorption isotherm, basal spacing, and adsorption/desorption experiments. The Cs adsorption of H-Bio and Verm fitted well to the Langmuir adsorption isotherm, while the Cs adsorption of Bio and E-Verm fitted well to the Freundlich adsorption isotherm.

View Article and Find Full Text PDF

The environmentally friendly electrokinetic process was investigated using model contaminated soil with Pb and humic acid. Although humic acid has a negative charge, it moved toward the cathode side by electroosmotic flow. The removal efficiency of Pb from model contaminated soil was 48.

View Article and Find Full Text PDF

Microspheres of aluminosilicate glass from volcanic sediment, whose surfaces were modified with functional groups, Shirasu-balloons (SB), were investigated as an adsorbent to remove cadmium ions from contaminated soil. The introduction of thiol groups (-SH) on the surface of SB enabled it to adsorb cadmium ions. Meanwhile, the introduction of an alkyl group (-ODS) made the surface of SB hydrophobic, and consequently increased the mechanical strength of SB.

View Article and Find Full Text PDF