Publications by authors named "Yasuhiko Shiratori"

A novel series of 2-amino-1,3,5-triazines bearing a tricyclic moiety as heat shock protein 90 (Hsp90) inhibitors is described. Molecular design was performed using X-ray cocrystal structures of the lead compound CH5015765 and natural Hsp90 inhibitor geldanamycin with Hsp90. We optimized affinity to Hsp90, in vitro cell growth inhibitory activity, water solubility, and liver microsomal stability of inhibitors and identified CH5138303.

View Article and Find Full Text PDF

Macrocyclic compounds bearing a 2-amino-6-arylpyrimidine moiety were identified as potent heat shock protein 90 (Hsp90) inhibitors by modification of 2-amino-6-aryltriazine derivative (CH5015765). We employed a macrocyclic structure as a skeleton of new inhibitors to mimic the geldanamycin-Hsp90 interactions. Among the identified inhibitors, CH5164840 showed high binding affinity for N-terminal Hsp90α (K(d)=0.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is a molecular chaperone which regulates maturation and stabilization of its substrate proteins, known as client proteins. Many client proteins of Hsp90 are involved in tumor progression and survival and therefore Hsp90 can be a good target for developing anticancer drugs. With the aim of efficiently identifying a new class of orally available inhibitors of the ATP binding site of this protein, we conducted fragment screening and virtual screening in parallel against Hsp90.

View Article and Find Full Text PDF

A series of benzofuran-based farnesyltransferase inhibitors have been designed and synthesized as antitumor agents. Among them, 11f showed the most potent enzyme inhibitory activity (IC(50)=1.1nM) and antitumor activity in human cancer xenografts in mice.

View Article and Find Full Text PDF

The C-4 side chain modification of lead compound 1 has resulted in the identification of a potent and selective Candida albicans N-myristoyltransferase (CaNmt) inhibitor RO-09-4609, which exhibits antifungal activity against C. albicans in vitro. Further modification of its C-2 substituent has led to the discovery of RO-09-4879, which exhibits antifungal activity in vivo.

View Article and Find Full Text PDF

The (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase (LVR) of the soil isolate bacterium Corynebacterium aquaticum M-13 is a NAD(H)-linked enzyme that catalyzes reversible oxidoreduction between (4R)-hydroxy-(6R)-2,2,6-trimethylcyclohexanone (actinol) and levodione. Here the crystal structure of a ternary complex of LVR with NADH and its inhibitor 2-methyl-2,4-pentanediol has been determined by molecular replacement and refined at 1.6-A resolution with a crystallographic R factor of 0.

View Article and Find Full Text PDF

A highly potent water soluble triazole antifungal prodrug, RO0098557 (1), has been identified from its parent, the novel antifungal agent RO0094815 (2). The prodrug includes a triazolium salt linked to an aminocarboxyl moiety, which undergoes enzymatic activation followed by spontaneous chemical degradation to release 2. Prodrug 1 showed high chemical stability and water solubility and exhibited strong antifungal activity against systemic candidiasis and aspergillosis as well as pulmonary aspergillosis in rats.

View Article and Find Full Text PDF

A new series of acid-stable antifungal agents having strong inhibitory activity against Candida albicans N-myristoyltransferase (CaNmt) has been developed starting from acid-unstable benzofuranylmethyl aryl ether 2. The inhibitor design is based on X-ray crystallographic analysis of a CaNmt complex with aryl ether 3. Among the new inhibitors, pyridine derivative 8b and benzimidazole derivative 8k showed clear antifungal activity in a murine systemic candidiasis model.

View Article and Find Full Text PDF

Myristoyl-CoA:protein N-myristoyltransferase (Nmt) is a monomeric enzyme that catalyzes the transfer of the fatty acid myristate from myristoyl-CoA to the N-terminal glycine residue of a variety of eukaryotic and viral proteins. Genetic and biochemical studies have established that Nmt is an attractive target for antifungal drugs. We present here crystal structures of C.

View Article and Find Full Text PDF

Pharmacokinetic (PK) parameters of N-myristoyltransferase (Nmt) inhibitors were measured, and a multivariate quantitative structure-pharmacokinetic relationship (QSPKR) model for predicting rat elimination half-life (t(1/2)) values was constructed. One hundred seven benzofuran derivatives have been selected as the data set for QSPKR analysis. The correlation between the t(1/2) values and 30 physicochemical descriptors was examined by a stepwise multiple linear regression method.

View Article and Find Full Text PDF

Modification of the C-2 position of a benzofuran derivative 6 (RO-09-4609), an N-myristoyltransferase (Nmt) inhibitor, has led us to discover antifungal agents that are active in a murine systemic candidiasis model. The drug design is based on the analysis of a crystal structure of a Candida Nmt complex with 2. The optimization has been guided by various biological evaluations including a quasi in vivo assay and pharmacokinetic analysis.

View Article and Find Full Text PDF