To elucidate the atomistic origin of volume relaxation in soda-lime silicate glass annealed below the glass transition temperature (Tg), the experimental and calculated Raman spectra were compared. By decomposing the calculated Raman spectra into specific groups of atoms, the Raman peaks at 800, 950, 1050, 1100, and 1150 cm-1 were attributed to oxygen and silicon in Si-O-Si, non-bridging oxygen in the Q2 unit, bridging oxygen in low-angle Si-O-Si, non-bridging oxygen in the Q4 unit, and bridging oxygen in high-angle Si-O-Si, respectively. Based on these attributions, we found that by decreasing the fictive temperature by annealing below Tg - 70 K, a homogenization reaction Q2 + Q4 → 2Q3 and an increase in average Si-O-Si angle occurred simultaneously.
View Article and Find Full Text PDFWe demonstrate that the modified Kempers model, a recently developed theoretical model for the Soret effect in oxide melts, is applicable for predicting the composition dependence of the Soret coefficient in three binary molecular liquids with negative enthalpies of mixing. We compared the theoretical and experimental values for water/ethanol, water/methanol, water/ethylene glycol, water/acetone, and benzene/n-heptane mixtures. In water/ethanol, water/methanol, and water/ethylene glycol, which have negative enthalpies of mixing across the entire mole fraction range, the modified Kempers model successfully predicts the sign change of the Soret coefficient with high accuracy, whereas, in water/acetone and benzene/n-heptane, which have composition ranges with positive enthalpies of mixing, it cannot predict the sign change of the Soret coefficient.
View Article and Find Full Text PDFUsing a laser-induced local-heating experiment combined with temperature analysis, we observed the composition-dependent sign inversion of the Soret coefficient of SiO in binary silicate melts, which was successfully explained by a modified Kempers model used for describing the Soret effect in oxide melts. In particular, the diffusion of SiO to the cold side under a temperature gradient, which is an anomaly in silicate melts, was observed in the SiO-poor compositions. The theoretical model indicates that the thermodynamic mixing properties of oxides, partial molar enthalpy of mixing, and partial molar volume are the dominant factors for determining the migration direction of the SiO component under a temperature gradient.
View Article and Find Full Text PDFDetermining the concentrations of different Sn ions in glass containing iron oxide by wet chemical analysis is a challenge because a redox reaction occurs between Sn and Fe. A chemical analysis method for determining the concentrations of Sn and Sn in soda lime glass containing iron oxide was proposed. A mixture of ascorbic acid, hydrochloric acid, and hydrofluoric acid was used to decompose the sample in a vessel with nitrogen flow.
View Article and Find Full Text PDFMicroscopic dynamical features in the relaxation of glass structures are one of the most important unsolved problems in condensed matter physics. Although the structural relaxation processes in the vicinity of glass transition temperature are phenomenologically expressed by the Kohlrausch-Williams-Watts function and the relaxation time can be successfully interpreted by Adam-Gibbs theory and/or Narayanaswamy's model, the atomic rearrangement, which is the origin of the volume change, and its driving force have not been elucidated. Using the microsecond time-scale molecular dynamics simulations, this study provides insights to quantitatively determine the origin of the thermal shrinkage below T in a soda-lime silicate glass.
View Article and Find Full Text PDFThe Soret effect in silicate melts has attracted attention in earth and material sciences, particularly in glass science and engineering, because a compositional change caused by the Soret effect modifies the material properties of silicate melts. We investigated the Soret effect in an NaO-SiO system, which is the most common representative of silicate melts. Our theoretical approach based on the modified Kempers model and non-equilibrium molecular dynamics simulation was validated for 30NaO-70SiO(mol.
View Article and Find Full Text PDFThe Soret effect or thermodiffusion is the temperature-gradient driven diffusion in a multicomponent system. Two important conclusions have been obtained for the Soret effect in multicomponent silicate melts: first, the SiO component concentrates in the hot region; and second, heavier isotopes concentrate in the cold region more than lighter isotopes. For the second point, the isotope fractionation can be explained by the classical mechanical collisions between pairs of particles.
View Article and Find Full Text PDFIn this study, we demonstrate a polarization imaging camera with a waveplate array of a silica glass fabricated by femtosecond (fs) laser direct writing. To use a waveplate array of silica glass for polarization imaging, non-uniformity of the transmittance and retardance in the waveplates must be considered. Therefore, we used a general method of polarization analysis with system matrices determined experimentally for all the units in the waveplate array.
View Article and Find Full Text PDFDiamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions.
View Article and Find Full Text PDFDirect three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth.
View Article and Find Full Text PDFLocal melting and modulation of elemental distributions can be induced inside a glass by focusing femtosecond (fs) laser pulses at high repetition rate (>100 kHz). Using only a single beam of fs laser pulses, the shape of the molten region is ellipsoidal, so the induced elemental distributions are often circular and elongate in the laser propagation direction. In this study, we show that the elongation of the fs laser-induced elemental distributions inside a soda-lime glass could be suppressed by parallel fsing of 250 kHz and 1 kHz fs laser pulses.
View Article and Find Full Text PDFThe spatial distributions of elements in a glass can be modulated by irradiation with high repetition rate femtosecond laser pulses. However, the shape of the distribution is restricted to being axially symmetric about the laser beam axis due to the isotropic diffusion of photo-thermal energy. In this study, we describe a method to control the shape of the elemental distribution more flexibly by simultaneous irradiation at multiple spots using a spatial light modulator.
View Article and Find Full Text PDFCrack formations inside a LiF single crystal after femtosecond laser irradiation at multiple points were investigated. In the case of sequential laser irradiation at three points, the propagations of some cracks were prevented by the dislocation bands generated by the previous laser irradiation. On the other hand, in the case of simultaneous laser irradiation at three points with a spatial light modulator, cracks in all the <100> directions from the photoexcited regions were generated clearly, but the length of one crack depended on the distribution of laser irradiation positions.
View Article and Find Full Text PDFCarbon nanoparticles (CNPs), hollow CNPs, nanodiamonds, and hybrid graphene spheres (HGSPs) are produced by using fs laser ablation in solution. These carbon nanostructures emit tunable photoluminescence and two-photon luminescence. The photoinduced layer-by-layer assembly of graphene nanosheets is observed to form HGSPs with tailored broadly-ranged sizes for the first time.
View Article and Find Full Text PDFVarious Yb²⁺-containing fluoride glasses melting under a reductive atmosphere were prepared. The brightest white light emission was observed for an AlF₃-based fluoride glass not containing Hf or Zr. The largest full width at half maximum of the white emission spectra was 202 nm.
View Article and Find Full Text PDFUsing femtosecond laser irradiation and subsequent annealing, nanocomposite structures composed of spinel-type ferrimagnetic nanoparticles (NPs) and plasmonic metallic NPs have been formed space-selectively within glass doped with both α-Fe(2)O(3) and Al. The Faraday rotation spectra exhibit a distinct negative peak at around 400 nm, suggesting that the ferrimagnetic Faraday response is enhanced by the localized surface plasmon resonance (LSPR) due to metallic Al NPs. At the interfaces in the nanocomposites, the ferrimagnetism of magnetite NPs is directly coupled with the plasmon in the Al NPs.
View Article and Find Full Text PDFThis paper reports an asymmetry structure-mediated route for highly localized control of light-matter interactions by using tapered TiO(2). We demonstrate for the first time that the growth habit of Ag nanostructures on tapered TiO(2) can be tuned by controllable photolysis. Site-selective anchoring of Ag nanoparticles or nanowires on tapered TiO(2) can be achieved by simply changing the external light.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2011
Silicon precipitation inside a glass is an important technique for silicon photonics. We successfully precipitated silicon inside silicate glasses containing an Al metal film using femtosecond laser irradiation. First, the Al-inserted sandwiched glass was fabricated by the direct bonding method.
View Article and Find Full Text PDFWe experimentally determined the three-dimensional temperature distribution and modification mechanism in a soda-lime-silicate glass under irradiation of ultrafast laser pulses at high repetition rates by analyzing the relationship between the morphology of the modification and ambient temperature. In contrast to previous studies, we consider the temperature dependence of thermophysical properties and the nonlinear effect on the absorbed energy distribution along the beam propagation axis in carrying out analyses. The optical absorptivity evaluated with the temperature distribution is approximately 80% and at most 3.
View Article and Find Full Text PDFWe present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing.
View Article and Find Full Text PDFThe structural changes inside rock-salt crystals after femtosecond (fs) laser irradiation are investigated using a microscopic pump-probe technique and an elastic simulation. The pump-probe imaging shows that a squircle-shaped stress wave is generated after the fs laser irradiation as a result of the relaxation of thermal stress in the photoexcited region. Pump-probe crossed-Nicols imaging and elastic simulation elucidate that shear stresses and tensile stresses are concentrated in specific regions during the propagation of the stress wave.
View Article and Find Full Text PDFIntermetallic Nd(2)Fe(14)B nanoparticles with an average diameter of 30 nm, which are smaller than a theoretical single magnetic domain size of 220 nm, were successfully prepared by the femtosecond laser fragmentation in liquid. The self-passivating amorphous carbon layer resulting from the decomposition of the surrounding solvent prevents the Nd(2)Fe(14)B nanoparticle from aggregation and oxidation. The coercivity of Nd(2)Fe(14)B nanoparticle increases with increase of the laser irradiation time, despite the reduction of crystallinity.
View Article and Find Full Text PDFWe report on the formation mechanism of element distribution in glass under high-repetition-rate femtosecond laser irradiation. We simultaneously focused two beams of femtosecond laser pulses inside a glass and confirmed the formation of characteristically shaped element distributions. The results of the numerical simulation in which we considered concentration- and temperature-gradient-driven diffusions were in excellent qualitative agreement with the experimental results, indicating that the main driving force is the sharp temperature gradient.
View Article and Find Full Text PDFWe focus on IR sensors with lower reflection for the wavelength around 10 μm, strongly awaited for detecting human bodies. A concave structure was designed as a more suitable reflection-free structure for IR light, and an optical system with a femtosecond laser was employed for verification of the effectiveness of the structure. The microstructures prepared through this process were fabricated and optically measured using SEM, FT-IR, and Raman spectroscopy.
View Article and Find Full Text PDF