Publications by authors named "Yasuharu Ueno"

Pancreatic ductal adenocarcinoma (PDAC) organoids that simulate the tumor microenvironment (TME) are an effective tool to identify how TME affects PDAC malignancy. We present a protocol for generating a fused pancreatic cancer organoid (FPCO) that partly reproduces the TME, including heterogeneous cancer-associated fibroblasts (CAFs), using patient-derived PDAC cells and human-induced pluripotent cell-derived endothelial and mesenchymal cells. We also describe the procedure for analyzing FPCO characteristics.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a progressive cancer with a poor prognosis. It contains a complex tumor microenvironment (TME) that includes various stromal cell types. Comprehending cellular communications within the TME is difficult due to a lack of research models that can recapitulate human PDAC-TME.

View Article and Find Full Text PDF

Donor organ shortages for transplantation remain a serious global concern, and alternative treatment is in high demand. Fetal cells and tissues have considerable therapeutic potential as, for example, organoid technology that uses human induced pluripotent stem cells (hiPSCs) to generate unlimited human fetal-like cells and tissues. We previously reported the in vivo vascularization of early fetal liver-like hiPSC-derived liver buds (LBs) and subsquent improved survival of recipient mice with subacute liver failure.

View Article and Find Full Text PDF

The aggressiveness of pancreatic ductal adenocarcinoma (PDAC) is affected by the tumor microenvironment (TME). In this study, to recapitulate the PDAC TME ex vivo, we cocultured patient-derived PDAC cells with mesenchymal and vascular endothelial cells derived from human induced pluripotent stem cells (hiPSCs) to create a fused pancreatic cancer organoid (FPCO) in an air-liquid interface. FPCOs were further induced to resemble two distinct aspects of PDAC tissue.

View Article and Find Full Text PDF

Human iPSC-derived liver organoids (LO) or hepatic spheroids (HS) have attracted widespread interest, and the numerous studies on them have recently provided various production protocols. However, the mechanism by which the 3D structures of LO and HS are formed from the 2D-cultured cells and the mechanism of the LO and HS maturation remain largely unknown. In this study, we demonstrate that is specifically induced in the cells that are suitable for HS formation and that PDGF receptors and signaling are required for HS formation and maturation.

View Article and Find Full Text PDF

Morphologically stable scaffold-free elastic cartilage tissue is crucial for treating external ear abnormalities. However, establishing adequate mechanical strength is challenging, owing to the difficulty of achieving chondrogenic differentiation in vitro; thus, cartilage reconstruction is a complex task. Auricular perichondrial chondroprogenitor cells exhibit high proliferation potential and can be obtained with minimal invasion.

View Article and Find Full Text PDF

Purpose: Depending on its histological subtype, salivary gland carcinoma (SGC) may have a poor prognosis. Due to the scarcity of preclinical experimental models, its molecular biology has so far remained largely unknown, hampering the development of new treatment modalities for patients with these malignancies. The aim of this study was to generate experimental human SGC models of multiple histological subtypes using patient-derived xenograft (PDX) and organoid culture techniques.

View Article and Find Full Text PDF

Hepatocytes play an important role in maintaining homeostasis in living organisms by carrying out various metabolic functions. The urea cycle, one of the metabolic pathways taking place in hepatocytes, is an important metabolic pathway that converts toxic ammonia to nontoxic urea. Performing quantitative assessments of individual metabolite levels using a mass spectrometer is useful for assessing the metabolic state of the urea cycle in hepatocytes.

View Article and Find Full Text PDF

Background: The role of the hepatic nervous system in liver development remains unclear. We previously created functional human micro-hepatic tissue in mice by co-culturing human hepatic endodermal cells with endothelial and mesenchymal cells. However, they lacked Glisson's sheath [the portal tract (PT)].

View Article and Find Full Text PDF

To generate a reliable preclinical model system exhibiting the molecular features of salivary adenoid cystic carcinoma (ACC) whose biology is still unclear due to the paucity of stable cell cultures. To develop new in vitro and in vivo models of ACC, the techniques of organoid culture and patient-derived tumor xenograft (PDX), which have attracted attention in other malignancies in recent years, were applied. Tumor specimens from surgically resected salivary ACC were proceeded for the preparation of PDX and organoid culture.

View Article and Find Full Text PDF

Recent progress in human induced pluripotent stem cells (iPSC) technologies suggest that iPSC application in regenerative medicine is a closer reality. Numerous challenges prevent iPSC application in the development of numerous tissues and for the treatment of various diseases. A key concern in therapeutic applications is the safety of the cell products to be transplanted into patients.

View Article and Find Full Text PDF

In this study, we reveal that liver organoid transplantation through the portal vein is a safe and effective method for the treatment of chronic liver damage. The liver organoids significantly reconstituted the hepatocytes; hence, the liver was significantly enlarged in this group, compared to the monolayer cell transplantation group in the retrorsine/partial hepatectomy (RS/PH) model. In the liver organoid transplantation group, the bile ducts were located in the donor area and connected to the recipient bile ducts.

View Article and Find Full Text PDF

We established three iPSC lines from postmortem-cultured fibroblasts derived following the sudden unexpected death of an 8-year-old girl with Lennox-Gastaut syndrome, who turned out to have the R551H-mutant STXBP1 gene. These iPSC clones showed pluripotent characteristics while retaining the genotype and demonstrated trilineage differentiation capability, indicating their utility in disease-modeling studies, i.e.

View Article and Find Full Text PDF

Therapies against hepatitis B virus (HBV) have improved in recent decades; however, the development of individualized treatments has been limited by the lack of individualized infection models. In this study, we used human induced pluripotent stem cell (hiPSC) to generate a functional liver organoid (LO) that inherited the genetic background of the donor, and evaluated its application in modeling HBV infection and exploring virus-host interactions. To establish a functional hiPSC-LO, we cultured hiPSC-derived endodermal, mesenchymal, and endothelial cells with a chemically defined medium in a three-dimensional microwell culture system.

View Article and Find Full Text PDF

Timely controlled oxygen (O) delivery is crucial for the developing liver. However, the influence of O on intercellular communication during hepatogenesis is unclear. Using a human induced pluripotent stem cell-derived liver bud (hiPSC-LB) model, we found hypoxia induced with an O-permeable plate promoted hepatic differentiation accompanied by TGFB1 and TGFB3 suppression.

View Article and Find Full Text PDF

Early endoderm progenitors naturally possess robust propagating potential to develop a majority of meter-long gastrointestinal tracts and are therefore considered as a promising source for therapy. Here, we demonstrated the reproducible generation of human CDX2 posterior gut endoderm cells (PGECs) from five induced pluripotent stem cell clones by manipulating FGF, TGF, and WNT signaling. Transcriptome analysis suggested that putative PGECs harbored an intermediate signature profile between definitive endoderm and organ-specific endoderm.

View Article and Find Full Text PDF

Background: Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown.

View Article and Find Full Text PDF

Organoid technology provides a revolutionary paradigm toward therapy but has yet to be applied in humans, mainly because of reproducibility and scalability challenges. Here, we overcome these limitations by evolving a scalable organ bud production platform entirely from human induced pluripotent stem cells (iPSC). By conducting massive "reverse" screen experiments, we identified three progenitor populations that can effectively generate liver buds in a highly reproducible manner: hepatic endoderm, endothelium, and septum mesenchyme.

View Article and Find Full Text PDF

Liver bud progenitors experience a transient amplification during the early organ growth phase, yet the mechanism responsible is not fully understood. Collective evidence highlights the specific requirements in stem cell metabolism for expanding organ progenitors during organogenesis and regeneration. Here, transcriptome analyses show that progenitors of the mouse and human liver bud growth stage specifically express the gene branched chain aminotransferase 1, encoding a known breakdown enzyme of branched-chain amino acids (BCAAs) for energy generation.

View Article and Find Full Text PDF

Transplantation of in-vitro-generated organ buds is a promising approach toward regenerating functional and vascularized organs. Though it has been recently shown in the context of liver models, demonstrating the applicability of this approach to other systems by delineating the molecular mechanisms guiding organ bud formation is critical. Here, we demonstrate a generalized method for organ bud formation from diverse tissues by combining pluripotent stem cell-derived tissue-specific progenitors or relevant tissue samples with endothelial cells and mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Introduction: Chimeric mice with humanized livers were recently established by transplanting human hepatocytes. This mouse model that is repopulated with functional human hepatocytes could be a useful tool for investigating human hepatic cell biology and drug metabolism and for other preclinical applications. Successfully transplanting human hepatocytes into mice requires that recipient mice with liver failure do not reject these human cells and provide a suitable microenvironment (supportive niche) to promote human donor cell expansion and differentiation.

View Article and Find Full Text PDF

In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development.

View Article and Find Full Text PDF

Background: Patients diagnosed with pancreatic cancer have a high mortality rate relating to the highly malignant and refractory nature of their disease, and reputedly linked to the presence of cancerous pancreatic stem cells. These stem cells are believed to be deeply involved in distant metastasis. Therefore, the present study examined whether pancreatic cancer stem cells (CSCs) exhibit organ-specific migration patterns during metastasis.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a malignant tumor associated with a generally poor prognosis and a high rate of recurrence. HCC usually develops in the context of chronic liver diseases, and long-lasting premalignant conditions precede cancer development. A promising therapeutic approach is to eliminate precancerous cells, which are considered as the precursors of cancer stem cells, to prevent further malignant transformation.

View Article and Find Full Text PDF

Unlabelled: Polycomb-group (PcG) proteins play crucial roles in self-renewal of stem cells by suppressing a host of genes through histone modifications. Identification of the downstream genes of PcG proteins is essential for elucidation of the molecular mechanisms of stem cell self-renewal. However, little is known about the PcG target genes in tissue stem cells.

View Article and Find Full Text PDF