Publications by authors named "Yasuaki Aratani"

We previously reported that myeloperoxidase-deficient (MPO) mice develop more severe neutrophil-rich lung inflammation than wild-type mice following intranasal Zymosan administration. Interestingly, we found that these mutant mice with severe lung inflammation also displayed pronounced neutrophilia and anemia, characterized by increased granulopoiesis and decreased erythropoiesis in the bone marrow, compared to wild-type mice. This condition was associated with higher concentrations of granulocyte-colony stimulating factor (G-CSF) in both the lungs and serum, a factor known to enhance granulopoiesis.

View Article and Find Full Text PDF

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties.

View Article and Find Full Text PDF

Objective: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is pathologically characterized by focal fibrinoid necrosis, in which ANCA-mediated neutrophil extracellular trap (NET) formation and subsequent endothelial cell necrosis occur. Cyclophilin D (CypD) plays an important role in mediation of cell necrosis and inflammation via the opening of mitochondrial permeability transition pores. This study was undertaken to examine the role of CypD in AAV pathogenesis.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is a primary immunodeficiency wherein phagocytes are unable to produce reactive oxygen species (ROS) owing to a defect in the nicotinamide adenine dinucleotide phosphate oxidase (NADPH) complex. Patients with CGD experience bacterial and fungal infections and excessive inflammatory disorders. Bone marrow transplantation and gene therapy are theoretically curative; however, residual pathogenic components cause inflammation and/or organic damage in patients.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation.

View Article and Find Full Text PDF

Patients with chronic granulomatous disease (CGD) who have mutated phagocyte NADPH oxidase are susceptible to infections due to reduced reactive oxygen species production and exhibit autoimmune and inflammatory diseases in the absence of evident infection. Neutrophils and macrophages have been extensively studied since phagocyte NADPH oxidase is mainly found only in them, while the impact of its deficiency on lymphocyte cellularity is less well characterized. We showed herein a zymosan-induced systemic inflammation model that CGD mice deficient in the phagocyte NADPH oxidase gp91phox subunit (NOX2) exhibited more severe thymic atrophy associated with peripheral blood and splenic lymphopenia and reduced lymphopoiesis in the bone marrow in comparison with the wild-type mice.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) is a heme-containing peroxidase expressed mainly in neutrophils and to a lesser degree in monocytes. In the presence of hydrogen peroxide and halides, MPO catalyzes the formation of reactive oxygen intermediates, including hypochlorous acid (HOCl). The MPO/HOCl system plays an important role in microbial killing by neutrophils.

View Article and Find Full Text PDF

Objectives: Pentraxin 3 (PTX3) is a multifunctional soluble factor. PTX3 can be involved in the regulation of vasculitis and is expressed in the cytoplasm of neutrophils. As anti-neutrophil cytoplasmic antibody (ANCA) is recognised as a cause of vasculitis, we aimed to discover the role of PTX3 in ANCA production in vivo.

View Article and Find Full Text PDF

Myeloperoxidase (MPO), a major component of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide and chloride anion. Phagocytosis is a critical event induced by neutrophils for host defense and inflammation. Interestingly, we found that MPO-deficient (MPO) neutrophils engulfed larger amounts of zymosan than wild-type neutrophils.

View Article and Find Full Text PDF

Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA).

View Article and Find Full Text PDF

Objective: We have previously reported that myeloperoxidase-deficient (MPO(-/-)) neutrophils produce greater amounts of macrophage inflammatory protein-2 (MIP-2) upon in vitro stimulation with zymosan than wild-type neutrophils. This study aimed to examine the effect of MPO deficiency on the expression of other cytokines and chemokines.

Methods: Wild-type and MPO(-/-) neutrophils isolated from peritoneal cavity were stimulated with zymosan in vitro.

View Article and Find Full Text PDF

Neutrophil granule exocytosis is crucial for host defense and inflammation. Neutrophils contain 4 types of granules, the exocytotic release of which is differentially regulated. This exocytosis is known to be driven by diverse mediators, including calcium and nucleotides, but the precise molecular mechanism remains largely unknown.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effect of myeloperoxidase (MPO) deficiency on lung inflammation induced by nonviable Candida albicans (nCA).

Methods: Mice were inoculated intranasally with nCA, and accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid was analyzed by flow cytometry. The levels of macrophage inflammatory protein 2 (MIP-2), keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in the lung were measured by ELISA.

View Article and Find Full Text PDF

Neutrophil accumulation is a critical event in the pathogenesis of inflammation. The generation of hypochlorous acid by myeloperoxidase (MPO) in neutrophils is crucial to the host defense response. MPO-deficient (MPO-KO) mice showed severely reduced cytotoxicity to Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and other microorganisms, demonstrating that an MPO-dependent oxidative system is important for in vivo host defense against fungi.

View Article and Find Full Text PDF

Study Design: An animal study using myeloperoxidase-knockout (MPO-KO) mice to examine the in vivo role of myeloperoxidase (MPO) in spinal cord injury (SCI).

Objective: To clarify the influence of MPO on inflammatory cell infiltration, tissue damage, and functional recovery after SCI.

Summary Of Background Data: MPO is considered to be important in spreading tissue damage after SCI because it generates strong neurotoxic oxidant hypochlorous acid (HOCl).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the cause of acute respiratory distress syndrome (ARDS) caused by influenza virus, specifically focusing on the role of immune response, particularly cytokines and lung damage factors in a mouse model infected with the A/H1N1 strain.
  • The infected mice exhibited severe pneumonia, showing signs like leukocyte infiltration and altered tight junctions, along with significant levels of inflammatory markers in their lung fluid.
  • The research highlights that neutrophil myeloperoxidase (MPO) plays a critical role in tissue damage during influenza pneumonia, and that mice lacking MPO had less inflammation, reduced protein leakage, and lower viral loads, suggesting that MPO contributes to the pathology of ARDS by affecting claudin molecules in lung tissues.
View Article and Find Full Text PDF

Objective And Design: This study examines the role of myeloperoxidase (MPO), a major constituent of neutrophils that generates hypochlorous acid, in neutrophil recruitment into the zymosan-exposed lung of mice.

Methods: Mice were inoculated intranasally with zymosan. The accumulation of neutrophils and other inflammatory cells within the lung was analyzed by flow cytometry.

View Article and Find Full Text PDF

Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro.

View Article and Find Full Text PDF

Background: Glomerular neutrophil infiltration has been thought to be a key pathological event in the development of myeloperoxidase (MPO)-specific anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis involving glomerulonephritis. Accordingly, we sought to explore the molecules responsible for glomerular neutrophil accumulation.

Methods: Glomerular neutrophil infiltration and renal chemokine expression in mice treated with anti-MPO IgG were evaluated.

View Article and Find Full Text PDF

3β-Hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A) and its aldolization product 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (secosterol-B) were recently detected in human atherosclerotic tissues and brain specimens, and they may play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. However, as their origin remains unidentified, we examined the formation mechanism, the stability, and the fate of secosterols in vitro and in vivo. About 40% of secosterol-A remained unchanged after 3 h incubation in the FBS-free medium, whereas 20% and 40% were converted to its aldehyde-oxidation product, 3β-hydroxy-5-oxo-secocholestan-6-oic acid, and secosterol-B, respectively.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) generates reactive halogenating species that can modify DNA. The aim of this study was to investigate the formation of 8-halogenated 2'-deoxyguanosines (8- halo-dGs) during inflammatory events. 8-Bromo-2'-dG (8-BrdG) and 8-chloro-2'-dG (8-CldG) were generated by treatment of MPO with hydrogen peroxide at physiological concentrations of Cl(-) and Br(-).

View Article and Find Full Text PDF

Lung neutrophilia is common to a variety of lung diseases. The production of reactive oxygen and nitrogen species during neutrophil oxidative burst has been associated with protein and DNA damage. Myeloperoxidase (MPO) is an enzyme stored in the azurophilic granula of neutrophils.

View Article and Find Full Text PDF

Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat-induced DNA double-strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified.

View Article and Find Full Text PDF

Objectives: Atheroma with reduced collagen content becomes fragile, but the underlying mechanisms have not been established. We investigated the influence of inducible nitric oxide synthase (iNOS) induction upon matrix metalloproteinases (MMP)s and collagen content in atheroma.

Methods And Results: ApoE-/- x iNOS-/- double knockout and ApoE-/- x iNOS+/+ mice were fed a high-cholesterol diet for 15 weeks.

View Article and Find Full Text PDF