Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks.
View Article and Find Full Text PDFCigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE).
View Article and Find Full Text PDFOne significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers.
View Article and Find Full Text PDFThe airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway.
View Article and Find Full Text PDFThe mechanisms underlying corticosteroid insensitivity in severe asthma have not been elucidated although some indirect clinical evidence points toward a role of mast cells. Here, we tested the hypothesis that mast cells can drive corticosteroid insensitivity in airway smooth muscle cells, a key player in asthma pathogenesis. Conditioned media from resting or FcεR1-activated human lung mast cells were incubated with serum-deprived ASM cells (1:4 dilution, 24 h) to determine their impact on the anti-inflammatory action of fluticasone on ASM cell chemokine expression induced by TNFα (10 ng/ml).
View Article and Find Full Text PDFThe mechanisms driving corticosteroid insensitivity in asthma are still unclear although evidence points toward a potential role of lung mast cells. Indeed, a number of in vitro studies using various cell types showed that different mediators produced by activated mast cells, including cytokines, have the capacity to interfere with the therapeutic action of corticosteroids. In patients with severe allergic refractory asthma, the anti-IgE monoclonal antibody (mAb), Omalizumab, has been shown to be associated with a marked reduction in inhaled and systemic use of corticosteroids, further suggesting a key role of mast cells in the poor response of patients to these drugs.
View Article and Find Full Text PDFBackground And Purpose: TGFβ1-mediated myofibroblast activation contributes to pathological fibrosis in many diseases including idiopathic pulmonary fibrosis (IPF), where myofibroblast resistance to oxidant-mediated apoptosis is also evident. We therefore investigated the involvement of redox-sensitive TRPA1 ion channels on human lung myofibroblasts (HLMFs) cell death and TGFβ1-mediated pro-fibrotic responses.
Experimental Approach: The effects of TGFβ1 stimulation on TRPA1 expression and cell viability was studied in HLMFs derived from IPF patients and non-fibrotic patients.
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a lung inflammatory disease characterized by progressive airflow limitation, chronic respiratory symptoms and frequent exacerbations. There is an unmet need to identify novel therapeutic alternatives beside bronchodilators that prevent disease progression. Levels of both Nitric Oxide (NO) and IL-6 were significantly increased in the plasma of patients in the exacerbation phase (ECOPD, n = 13) when compared to patients in the stable phase (SCOPD, n = 38).
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and mortality. Genome wide association studies have shown significant associations between airflow obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1. However, the expression, cellular distribution and function of tensin1 in human airway tissue and cells are unknown.
View Article and Find Full Text PDFAirway remodeling in asthma manifests, in part, as enhanced airway smooth muscle (ASM) mass, due to myocyte proliferation. While the anti-proliferative effects of glucocorticoid (GC) were investigated in normal ASM cells (NASMC), little is known about such effects in ASM cells derived from asthma subjects (AASMC). We posit that GC differentially modulates mitogen-induced proliferation of AASMC and NASMC.
View Article and Find Full Text PDFGlucocorticoid (GC) anti-inflammatory effects generally require a prolonged onset of action and involve genomic processes. Because of the rapidity of some of the GC effects, however, the concept that non-genomic actions may contribute to GC mechanisms of action has arisen. While the mechanisms have not been completely elucidated, the non-genomic effects may play a role in the management of inflammatory diseases.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited therapeutic options. K3.1 ion channels play a critical role in TGFβ1-dependent pro-fibrotic responses in human lung myofibroblasts.
View Article and Find Full Text PDFβ2-adrenoceptor agonists, often used in combination with corticosteroids, have been extensively used for the treatment of asthma. However, concerns have been raised regarding their adverse effects and safety including poor asthma control, life-threatening exacerbations, exacerbations that often require hospitalization, and asthma-related deaths. The question as to whether these adverse effects relate to the loss of their bronchoprotective action remains an interesting possibility.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR).
View Article and Find Full Text PDFHuman lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesized that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs.
View Article and Find Full Text PDFBackground: Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a common, progressive, and invariably lethal interstitial lung disease with no effective therapy. The key cell driving the development of fibrosis is the myofibroblast. Lipoxin A4 (LXA4) is an anti-inflammatory lipid, important in the resolution of inflammation, and it has potential antifibrotic activity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2015
Although the majority of patients with asthma are well controlled by inhaled glucocorticoids (GCs), patients with severe asthma are poorly responsive to GCs. This latter group is responsible for a disproportionate share of health care costs associated with asthma. Recent studies in immune cells have incriminated interferon-γ (IFN-γ) as a possible trigger of GC insensitivity in severe asthma; however, little is known about the role of IFN-γ in modulating GC effects in other clinically relevant nonimmune cells, such as airway epithelial cells.
View Article and Find Full Text PDFPreclinical models of human conditions including asthma showed the therapeutic potential of Compound A (CpdA), a dissociated glucocorticoid (GC) receptor (GRα) ligand. Whether CpdA inhibits GC resistance, a central feature of severe asthma, has not been addressed. We investigated whether CpdA modulates cytokine-induced GC resistance in human airway smooth muscle (ASM) cells.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a common and invariably lethal interstitial lung disease with poorly effective therapy. Blockade of the K(+) channel KCa3.1 reduces constitutive α-SMA and Smad2/3 nuclear translocation in IPF-derived human lung myofibroblasts (HLMFs), and inhibits several transforming growth factor beta 1 (TGFβ1)-dependent cell processes.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis is a common and invariably fatal disease with limited therapeutic options. Ca2+-activated KCa3.1 potassium channels play a key role in promoting TGFβ1 and bFGF-dependent profibrotic responses in human lung myofibroblasts (HLMFs).
View Article and Find Full Text PDFBackground: The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor-homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown.
Objectives: We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells.
Methods: DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR.
Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma.
View Article and Find Full Text PDF