Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis.
View Article and Find Full Text PDFMutations in chromatin modifier genes are frequently associated with neurodevelopmental diseases. We herein demonstrate that the chromodomain helicase DNA-binding protein 7 (Chd7), frequently associated with CHARGE syndrome, is indispensable for normal cerebellar development. Genetic inactivation of Chd7 in cerebellar granule neuron progenitors leads to cerebellar hypoplasia in mice, due to the impairment of granule neuron differentiation, induction of apoptosis and abnormal localization of Purkinje cells, which closely recapitulates known clinical features in the cerebella of CHARGE patients.
View Article and Find Full Text PDF