The Hepatitis Delta Virus (HDV) relies mainly on host proteins for its replication. We previously identified that PSF and p54nrb associate with the HDV RNA genome during viral replication. Together with PSP1, these proteins are part of paraspeckles, which are subnuclear bodies nucleated by the long non-coding RNA NEAT1.
View Article and Find Full Text PDFThe right terminal domain of genomic hepatitis delta virus (HDV) RNA is involved in viral replication by recruiting host RNA polymerase II. To identify conserved features of this region, we performed high-throughput 454 sequencing of an HDV population actively replicating in cells. We generated 473,139 sequences representing 2351 new HDV variants of this region and investigated nucleotide conservation and positions of covariation in the population.
View Article and Find Full Text PDFThe hepatitis delta virus (HDV) is a small (~1700 nucleotides) RNA pathogen which encodes only one open reading frame. Consequently, HDV is dependent on host proteins to replicate its RNA genome. Recently, we reported that ASF/SF2 binds directly and specifically to an HDV-derived RNA fragment which has RNA polymerase II promoter activity.
View Article and Find Full Text PDFPotato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
The error rate of RNA-dependent RNA polymerases (RdRp) affects the mutation frequency in a population of viral RNAs. Using chikungunya virus (CHIKV), we describe a unique arbovirus fidelity variant with a single C483Y amino acid change in the nsP4 RdRp that increases replication fidelity and generates populations with reduced genetic diversity. In mosquitoes, high fidelity CHIKV presents lower infection and dissemination titers than wild type.
View Article and Find Full Text PDFRNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase.
View Article and Find Full Text PDF