There is a growing interest for complex in vitro environments that closely mimic the extracellular matrix and allow cells to grow in microenvironments that are closer to the one in vivo. Protein-based matrices and especially hydrogels can answer this need, thanks to their similarity with the cell microenvironment and their ease of customization. In this study, an experimental design was conducted to study the influence of synthesis parameters on the physical properties of gelatin methacryloyl (GelMA).
View Article and Find Full Text PDFGelatin methacryloyl (GelMA) is widely used for tissue engineering applications as an extracellular matrix (ECM) mimicking scaffold due to its cost-effectiveness, ease of synthesis, and high biocompatibility. GelMA is widely synthesized from porcine skin gelatin, which labors under clinical, religious, and economical restrictions. In order to overcome these limitations, GelMA can be produced from fish skin gelatin, which is eco-friendly as well.
View Article and Find Full Text PDF